Suppr超能文献

基于卷积神经网络的超低功耗嵌入式 RISC-V 处理器的癫痫发作检测。

Epileptic Seizure Detection on an Ultra-Low-Power Embedded RISC-V Processor Using a Convolutional Neural Network.

机构信息

Sensor System Electronics, Institute of Electrical Engineering and Information Technology, Kiel University, 24143 Kiel, Germany.

CMOS Design, Technical University Braunschweig, 38106 Braunschweig, Germany.

出版信息

Biosensors (Basel). 2021 Jun 23;11(7):203. doi: 10.3390/bios11070203.

Abstract

The treatment of refractory epilepsy via closed-loop implantable devices that act on seizures either by drug release or electrostimulation is a highly attractive option. For such implantable medical devices, efficient and low energy consumption, small size, and efficient processing architectures are essential. To meet these requirements, epileptic seizure detection by analysis and classification of brain signals with a convolutional neural network (CNN) is an attractive approach. This work presents a CNN for epileptic seizure detection capable of running on an ultra-low-power microprocessor. The CNN is implemented and optimized in MATLAB. In addition, the CNN is also implemented on a GAP8 microprocessor with RISC-V architecture. The training, optimization, and evaluation of the proposed CNN are based on the CHB-MIT dataset. The CNN reaches a median sensitivity of 90% and a very high specificity over 99% corresponding to a median false positive rate of 6.8 s per hour. After implementation of the CNN on the microcontroller, a sensitivity of 85% is reached. The classification of 1 s of EEG data takes t=35 ms and consumes an average power of P≈140 μW. The proposed detector outperforms related approaches in terms of power consumption by a factor of 6. The universal applicability of the proposed CNN based detector is verified with recording of epileptic rats. This results enable the design of future medical devices for epilepsy treatment.

摘要

通过作用于癫痫发作的闭环植入式设备(通过药物释放或电刺激)来治疗耐药性癫痫是一种极具吸引力的选择。对于这种植入式医疗设备,高效、低能耗、小尺寸和高效的处理架构是必不可少的。为了满足这些要求,通过使用卷积神经网络(CNN)对脑信号进行分析和分类来检测癫痫发作是一种很有吸引力的方法。本工作提出了一种可在超低功耗微处理器上运行的用于癫痫发作检测的 CNN。该 CNN 在 MATLAB 中进行了实现和优化。此外,还在具有 RISC-V 架构的 GAP8 微处理器上实现了该 CNN。所提出的 CNN 的训练、优化和评估是基于 CHB-MIT 数据集进行的。该 CNN 的中位数敏感性达到 90%,非常高的特异性超过 99%,对应的中位数假阳性率为每小时 6.8 秒。在微控制器上实现 CNN 后,达到了 85%的敏感性。对 1 秒 EEG 数据的分类需要 t=35ms,平均功耗 P≈140μW。与相关方法相比,所提出的检测器在功耗方面的优势明显,降低了 6 倍。所提出的基于 CNN 的检测器的通用性已通过对癫痫大鼠的记录得到验证。这些结果为未来的癫痫治疗医疗设备的设计提供了可能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04b3/8301882/c195d277684b/biosensors-11-00203-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验