Li Xingyou, Kim Hyoungrae, Kakani Vijay, Kim Hakil
Electrical and Computer Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
Future Vehicle Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
Sensors (Basel). 2024 Feb 5;24(3):1039. doi: 10.3390/s24031039.
This study introduces a multilayer perceptron (MLP) error compensation method for real-time camera orientation estimation, leveraging a single vanishing point and road lane lines within a steady-state framework. The research emphasizes cameras with a roll angle of 0°, predominant in autonomous vehicle contexts. The methodology estimates pitch and yaw angles using a single image and integrates two Kalman filter models with inputs from image points (u, v) and derived angles (pitch, yaw). Performance metrics, including avgE, minE, maxE, ssE, and Stdev, were utilized, testing the system in both simulator and real-vehicle environments. The outcomes indicate that our method notably enhances the accuracy of camera orientation estimations, consistently outpacing competing techniques across varied scenarios. This potency of the method is evident in its adaptability and precision, holding promise for advanced vehicle systems and real-world applications.
本研究介绍了一种用于实时相机方位估计的多层感知器(MLP)误差补偿方法,该方法在稳态框架内利用单个消失点和道路车道线。该研究着重于横滚角为0°的相机,这在自动驾驶车辆环境中很常见。该方法使用单幅图像估计俯仰角和偏航角,并将两个卡尔曼滤波器模型与来自图像点(u,v)和导出角度(俯仰角、偏航角)的输入进行整合。使用了包括平均误差(avgE)、最小误差(minE)、最大误差(maxE)、平方和误差(ssE)和标准差(Stdev)在内的性能指标,在模拟器和实车环境中对系统进行了测试。结果表明,我们的方法显著提高了相机方位估计的准确性,在各种场景下始终优于竞争技术。该方法的这种效能在其适应性和精度方面很明显,对先进车辆系统和实际应用具有前景。