Chandrasekaran Ganesh, Dhanasekaran S, Moorthy C, Arul Oli A
Department of Computer and Communication Engineering, Sri Eshwar College of Engineering, Coimbatore, Tamil Nadu, India.
Department of Electronics and Communication Engineering, Sri Eshwar College of Engineering, Coimbatore, Tamil Nadu, India.
Comput Methods Biomech Biomed Engin. 2025 May;28(6):777-799. doi: 10.1080/10255842.2024.2313066. Epub 2024 Feb 10.
Multimodal sentiment analysis, an increasingly vital task in the realms of natural language processing and machine learning, addresses the nuanced understanding of emotions and sentiments expressed across diverse data sources. This study presents the Hybrid LXGB (Long short-term memory Extreme Gradient Boosting) Model, a novel approach for multimodal sentiment analysis that merges the strengths of long short-term memory (LSTM) and XGBoost classifiers. The primary objective is to address the intricate task of understanding emotions across diverse data sources, such as textual data, images, and audio cues. By leveraging the capabilities of deep learning and gradient boosting, the Hybrid LXGB Model achieves an exceptional accuracy of 97.18% on the CMU-MOSEI dataset, surpassing alternative classifiers, including LSTM, CNN, DNN, and XGBoost. This study not only introduces an innovative model but also contributes to the field by showcasing its effectiveness and balance in capturing the nuanced spectrum of sentiments within multimodal datasets. The comparison with equivalent studies highlights the model's remarkable success, emphasizing its potential for practical applications in real-world scenarios. The Hybrid LXGB Model offers a unique and promising perspective in the realm of multimodal sentiment analysis, demonstrating the significance of integrating LSTM and XGBoost for enhanced performance.
多模态情感分析是自然语言处理和机器学习领域中一项日益重要的任务,旨在对跨多种数据源表达的情感和情绪进行细致入微的理解。本研究提出了混合LXGB(长短期记忆极端梯度提升)模型,这是一种用于多模态情感分析的新方法,融合了长短期记忆(LSTM)和XGBoost分类器的优势。主要目标是解决理解跨多种数据源(如文本数据、图像和音频线索)中的情感这一复杂任务。通过利用深度学习和梯度提升的能力,混合LXGB模型在CMU - MOSEI数据集上达到了97.18%的卓越准确率,超过了包括LSTM、CNN、DNN和XGBoost在内的其他分类器。本研究不仅引入了一种创新模型,还通过展示其在捕捉多模态数据集中细微情感谱方面的有效性和平衡性,为该领域做出了贡献。与同类研究的比较突出了该模型的显著成功,强调了其在现实场景中实际应用的潜力。混合LXGB模型在多模态情感分析领域提供了一个独特且有前景的视角,证明了整合LSTM和XGBoost以提高性能的重要性。