Gui Qiuyue, Li Yuanyuan, Liu Jinping
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China.
J Colloid Interface Sci. 2024 May 15;662:119-128. doi: 10.1016/j.jcis.2024.02.001. Epub 2024 Feb 6.
Aqueous sodium-ion batteries (ASIBs) have garnered considerable attention for large-scale energy storage because of inherent safety and the Na abundance. Nonetheless, the solidification of aqueous electrolytes under sub-zero conditions results in diminished ionic conductivity and increased viscosity, hindering the electrochemical performance and versatility of ASIBs. Herein, we introduce a novel freeze-tolerant ASIB using antifreezing ethylene glycol-polyacrylamide-sodium perchlorate hydrogel electrolyte, paired with new couple of NaMnTi(PO) cathode and Fe-based anode. The addition of ethylene glycol in the electrolyte enhances ionic conductivity at cold temperatures and optimizes electrode capacity by reduced hydrogen bonding within the water molecules and a decline in free water activity. The pronounced interaction between ethylene glycol and water, combined with the cooperative effect of the crosslinked polyacrylamide network, enables the hydrogel electrolyte to effectively suppress water solidification and maintain better water-retaining capability, achieving remarkable mechanical extensibility and good ionic conductivity (2.5 mS cm) at - 40 °C. Consequently, the ASIB equipped with hydrogel electrolyte delivers high energy density of 43.6 Wh kg and retains 64 % at - 30 °C. Furthermore, the flexible ASIB demonstrates robust mechanical durability when bent or compressed, efficiently powering electronic devices even at - 30 °C. Our findings will pave the way for advancing low-temperature ASIBs with hydrogel-based electrolytes.
水系钠离子电池(ASIBs)因其固有的安全性和钠资源丰富而在大规模储能领域备受关注。然而,在零下条件下水系电解质的凝固会导致离子电导率降低和粘度增加,从而阻碍了ASIBs的电化学性能和通用性。在此,我们介绍了一种新型的耐冻ASIB,它使用抗冻的乙二醇-聚丙烯酰胺-高氯酸钠水凝胶电解质,并与新型的NaMnTi(PO) 阴极和铁基阳极配对。电解质中添加乙二醇可提高低温下的离子电导率,并通过减少水分子内的氢键和降低自由水活性来优化电极容量。乙二醇与水之间的显著相互作用,结合交联聚丙烯酰胺网络的协同效应,使水凝胶电解质能够有效抑制水的凝固并保持更好的保水能力,在-40°C时实现了出色的机械延展性和良好的离子电导率(2.5 mS cm)。因此,配备水凝胶电解质的ASIB具有43.6 Wh kg的高能量密度,在-30°C时仍能保持64%。此外,柔性ASIB在弯曲或压缩时表现出强大的机械耐久性,即使在-30°C时也能有效地为电子设备供电。我们的研究结果将为推进基于水凝胶电解质的低温ASIBs铺平道路。