Suppr超能文献

基于卷积神经网络的牙菌斑图像龋病诊断

Dental Caries diagnosis from bitewing images using convolutional neural networks.

机构信息

Department of Data Science, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran.

Department of Medical Informatics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.

出版信息

BMC Oral Health. 2024 Feb 10;24(1):211. doi: 10.1186/s12903-024-03973-9.

Abstract

BACKGROUND

Dental caries, also known as tooth decay, is a widespread and long-standing condition that affects people of all ages. This ailment is caused by bacteria that attach themselves to teeth and break down sugars, creating acid that gradually wears away at the tooth structure. Tooth discoloration, pain, and sensitivity to hot or cold foods and drinks are common symptoms of tooth decay. Although this condition is prevalent among all age groups, it is especially prevalent in children with baby teeth. Early diagnosis of dental caries is critical to preventing further decay and avoiding costly tooth repairs. Currently, dentists employ a time-consuming and repetitive process of manually marking tooth lesions after conducting radiographic exams. However, with the rapid development of artificial intelligence in medical imaging research, there is a chance to improve the accuracy and efficiency of dental diagnosis.

METHODS

This study introduces a data-driven model for accurately diagnosing dental decay through the use of Bitewing radiology images using convolutional neural networks. The dataset utilized in this research includes 713 patient images obtained from the Samin Maxillofacial Radiology Center located in Tehran, Iran. The images were captured between June 2020 and January 2022 and underwent processing via four distinct Convolutional Neural Networks. The images were resized to 100 × 100 and then divided into two groups: 70% (4219) for training and 30% (1813) for testing. The four networks employed in this study were AlexNet, ResNet50, VGG16, and VGG19.

RESULTS

Among different well-known CNN architectures compared in this study, the VGG19 model was found to be the most accurate, with a 93.93% accuracy.

CONCLUSION

This promising result indicates the potential for developing an automatic AI-based dental caries diagnostic model from Bitewing images. It has the potential to serve patients or dentists as a mobile app or cloud-based diagnosis service (clinical decision support system).

摘要

背景

龋齿,也称为蛀牙,是一种广泛存在且长期存在的疾病,影响所有年龄段的人群。这种疾病是由附着在牙齿上并分解糖分的细菌引起的,产生的酸会逐渐侵蚀牙体结构。牙齿变色、疼痛以及对冷热食物和饮料的敏感是龋齿的常见症状。虽然这种情况在所有年龄段都很普遍,但在有乳牙的儿童中尤其普遍。早期诊断龋齿对于防止进一步恶化和避免昂贵的牙齿修复至关重要。目前,牙医在进行放射检查后,采用耗时且重复的手动方式标记牙齿病变。然而,随着人工智能在医学影像研究中的快速发展,有机会提高牙科诊断的准确性和效率。

方法

本研究通过使用卷积神经网络(Convolutional Neural Networks)利用口内 X 光图像准确诊断龋齿,引入了一种数据驱动的模型。本研究使用的数据集包括 713 名来自伊朗德黑兰 Samin 颌面放射学中心的患者图像。这些图像是在 2020 年 6 月至 2022 年 1 月期间拍摄的,并通过四个不同的卷积神经网络进行了处理。这些图像被调整为 100×100,然后分为两组:70%(4219 张)用于训练,30%(1813 张)用于测试。本研究中使用的四个网络分别是 AlexNet、ResNet50、VGG16 和 VGG19。

结果

在本研究中比较的不同知名 CNN 架构中,VGG19 模型被发现是最准确的,准确率为 93.93%。

结论

这一有希望的结果表明,从口内 X 光图像开发基于人工智能的龋齿自动诊断模型具有潜力。它有可能作为一种移动应用程序或基于云的诊断服务(临床决策支持系统)为患者或牙医提供服务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed42/10858561/76d0229821bf/12903_2024_3973_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验