Suppr超能文献

基于深度学习的牙颌翼片龋病检测和分割方法。

Deep-learning approach for caries detection and segmentation on dental bitewing radiographs.

机构信息

Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Eskisehir Osmangazi University, 26240, Eskisehir, Turkey.

Eskisehir Osmangazi University Center of Research and Application for Computer Aided Diagnosis and Treatment in Health, Eskisehir, Turkey.

出版信息

Oral Radiol. 2022 Oct;38(4):468-479. doi: 10.1007/s11282-021-00577-9. Epub 2021 Nov 22.

Abstract

OBJECTIVES

The aim of this study is to recommend an automatic caries detection and segmentation model based on the Convolutional Neural Network (CNN) algorithms in dental bitewing radiographs using VGG-16 and U-Net architecture and evaluate the clinical performance of the model comparing to human observer.

METHODS

A total of 621 anonymized bitewing radiographs were used to progress the Artificial Intelligence (AI) system (CranioCatch, Eskisehir, Turkey) for the detection and segmentation of caries lesions. The radiographs were obtained from the Radiology Archive of the Department of Oral and Maxillofacial Radiology of the Faculty of Dentistry of Ordu University. VGG-16 and U-Net implemented with PyTorch models were used for the detection and segmentation of caries lesions, respectively.

RESULTS

The sensitivity, precision, and F-measure rates for caries detection and caries segmentation were 0.84, 0.81; 0.84, 0.86; and 0.84, 0.84, respectively. Comparing to 5 different experienced observers and AI models on external radiographic dataset, AI models showed superiority to assistant specialists.

CONCLUSION

CNN-based AI algorithms can have the potential to detect and segmentation of dental caries accurately and effectively in bitewing radiographs. AI algorithms based on the deep-learning method have the potential to assist clinicians in routine clinical practice for quickly and reliably detecting the tooth caries. The use of these algorithms in clinical practice can provide to important benefit to physicians as a clinical decision support system in dentistry.

摘要

目的

本研究旨在推荐一种基于卷积神经网络(CNN)算法的自动龋病检测和分割模型,该模型使用 VGG-16 和 U-Net 架构,在牙科咬合片上,并评估该模型与人工观察者相比的临床性能。

方法

总共使用了 621 张匿名咬合片来推进人工智能(AI)系统(CranioCatch,Eskisehir,土耳其)用于检测和分割龋病病变。这些射线照片是从奥鲁大学牙科学院口腔颌面放射学系的放射学档案中获得的。使用 PyTorch 模型实现了 VGG-16 和 U-Net,分别用于龋病病变的检测和分割。

结果

龋病检测和龋病分割的灵敏度、精度和 F 测量率分别为 0.84、0.81;0.84、0.86;和 0.84、0.84。与外部放射数据集上的 5 名不同经验丰富的观察者和 AI 模型相比,AI 模型优于辅助专家。

结论

基于 CNN 的 AI 算法有可能在咬合片中准确有效地检测和分割龋病。基于深度学习方法的 AI 算法有可能在常规临床实践中帮助临床医生快速可靠地检测牙齿龋病。在临床实践中使用这些算法可以为医生提供重要的益处,作为牙科的临床决策支持系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验