Statistics and Data Insights, Bayer plc, 400 South Oak Way, Reading, UK.
Child Health Evaluative Sciences, The Hospital for Sick Children, 686 Bay Street, Toronto, Canada.
BMC Med Res Methodol. 2024 Feb 10;24(1):32. doi: 10.1186/s12874-024-02157-x.
When studying the association between treatment and a clinical outcome, a parametric multivariable model of the conditional outcome expectation is often used to adjust for covariates. The treatment coefficient of the outcome model targets a conditional treatment effect. Model-based standardization is typically applied to average the model predictions over the target covariate distribution, and generate a covariate-adjusted estimate of the marginal treatment effect.
The standard approach to model-based standardization involves maximum-likelihood estimation and use of the non-parametric bootstrap. We introduce a novel, general-purpose, model-based standardization method based on multiple imputation that is easily applicable when the outcome model is a generalized linear model. We term our proposed approach multiple imputation marginalization (MIM). MIM consists of two main stages: the generation of synthetic datasets and their analysis. MIM accommodates a Bayesian statistical framework, which naturally allows for the principled propagation of uncertainty, integrates the analysis into a probabilistic framework, and allows for the incorporation of prior evidence.
We conduct a simulation study to benchmark the finite-sample performance of MIM in conjunction with a parametric outcome model. The simulations provide proof-of-principle in scenarios with binary outcomes, continuous-valued covariates, a logistic outcome model and the marginal log odds ratio as the target effect measure. When parametric modeling assumptions hold, MIM yields unbiased estimation in the target covariate distribution, valid coverage rates, and similar precision and efficiency than the standard approach to model-based standardization.
We demonstrate that multiple imputation can be used to marginalize over a target covariate distribution, providing appropriate inference with a correctly specified parametric outcome model and offering statistical performance comparable to that of the standard approach to model-based standardization.
在研究治疗与临床结果之间的关系时,通常使用条件结果预期的参数多变量模型来调整协变量。结果模型的治疗系数针对的是条件治疗效果。基于模型的标准化通常用于在目标协变量分布上平均模型预测,并生成边缘治疗效果的协变量调整估计值。
基于模型的标准化的标准方法涉及最大似然估计和使用非参数引导。我们引入了一种新颖的、通用的基于多重插补的基于模型的标准化方法,当结果模型是广义线性模型时,该方法很容易应用。我们将我们提出的方法称为多重插补边缘化(MIM)。MIM 由两个主要阶段组成:合成数据集的生成和它们的分析。MIM 适应贝叶斯统计框架,该框架自然允许有原则地传播不确定性,将分析集成到概率框架中,并允许纳入先验证据。
我们进行了一项模拟研究,以基准测试与参数结果模型结合使用的 MIM 的有限样本性能。模拟在具有二项结果、连续值协变量、逻辑结果模型和边缘对数优势比作为目标效果量的情况下提供了原理证明。当参数建模假设成立时,MIM 在目标协变量分布中产生无偏估计,有效覆盖率,以及与基于模型的标准化的标准方法相当的精度和效率。
我们证明了多重插补可以用于边缘化目标协变量分布,提供了正确指定参数结果模型的适当推断,并提供了与基于模型的标准化的标准方法相当的统计性能。