Suppr超能文献

个体随机试验中模型误设下协变量调整方法的比较。

A comparison of covariate adjustment approaches under model misspecification in individually randomized trials.

机构信息

Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK.

MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom.

出版信息

Trials. 2023 Jan 6;24(1):14. doi: 10.1186/s13063-022-06967-6.

Abstract

Adjustment for baseline covariates in randomized trials has been shown to lead to gains in power and can protect against chance imbalances in covariates. For continuous covariates, there is a risk that the the form of the relationship between the covariate and outcome is misspecified when taking an adjusted approach. Using a simulation study focusing on individually randomized trials with small sample sizes, we explore whether a range of adjustment methods are robust to misspecification, either in the covariate-outcome relationship or through an omitted covariate-treatment interaction. Specifically, we aim to identify potential settings where G-computation, inverse probability of treatment weighting (IPTW), augmented inverse probability of treatment weighting (AIPTW) and targeted maximum likelihood estimation (TMLE) offer improvement over the commonly used analysis of covariance (ANCOVA). Our simulations show that all adjustment methods are generally robust to model misspecification if adjusting for a few covariates, sample size is 100 or larger, and there are no covariate-treatment interactions. When there is a non-linear interaction of treatment with a skewed covariate and sample size is small, all adjustment methods can suffer from bias; however, methods that allow for interactions (such as G-computation with interaction and IPTW) show improved results compared to ANCOVA. When there are a high number of covariates to adjust for, ANCOVA retains good properties while other methods suffer from under- or over-coverage. An outstanding issue for G-computation, IPTW and AIPTW in small samples is that standard errors are underestimated; they should be used with caution without the availability of small-sample corrections, development of which is needed. These findings are relevant for covariate adjustment in interim analyses of larger trials.

摘要

在随机试验中,对基线协变量进行调整已被证明可以提高功效,并可以防止协变量出现机会性不平衡。对于连续协变量,当采用调整方法时,存在协变量与结局之间关系形式被错误指定的风险。本研究通过一项针对小样本量个体随机试验的模拟研究,探索了一系列调整方法在协变量-结局关系或遗漏的协变量-治疗交互作用被错误指定的情况下是否具有稳健性。具体而言,我们旨在确定潜在的情况下,G 计算法、逆概率处理加权(Inverse Probability of Treatment Weighting,IPTW)、增强逆概率处理加权(Augmented Inverse Probability of Treatment Weighting,AIPTW)和靶向最大似然估计(Targeted Maximum Likelihood Estimation,TMLE)是否可以优于常用的协方差分析(Analysis of Covariance,ANCOVA)。我们的模拟结果表明,如果调整少数几个协变量,样本量为 100 或更大,并且没有协变量-治疗相互作用,那么所有调整方法通常都能抵抗模型错误指定。当存在治疗与偏态协变量的非线性相互作用且样本量较小时,所有调整方法都可能存在偏差;然而,允许相互作用的方法(如带有相互作用的 G 计算法和 IPTW)与 ANCOVA 相比,结果有所改善。当需要调整大量的协变量时,ANCOVA 保持了良好的性质,而其他方法则存在覆盖不足或过度的问题。在小样本量下,G 计算法、IPTW 和 AIPTW 的一个突出问题是标准误差被低估;在没有小样本校正的情况下,应谨慎使用这些方法,需要开发这些校正方法。这些发现与较大试验的中期分析中的协变量调整有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1f9/9817411/8bd0de5b7e11/13063_2022_6967_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验