Suppr超能文献

用于可持续微生物电化学生产过氧化氢的增材制造衍生的独立式3D热解碳电极。

Additive manufacturing-derived free-standing 3D pyrolytic carbon electrodes for sustainable microbial electrochemical production of HO.

作者信息

Zou Rusen, Rezaei Babak, Keller Stephan Sylvest, Zhang Yifeng

机构信息

Department of Environmental & Resource Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.

National Centre for Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.

出版信息

J Hazard Mater. 2024 Apr 5;467:133681. doi: 10.1016/j.jhazmat.2024.133681. Epub 2024 Feb 2.

Abstract

Producing HO via microbial electrosynthesis is a cost-effective and environmentally favorable alternative to the costly and environmentally hazardous anthraquinone method. However, most studies have relied on carbon electrodes with two-dimensional (2D) surfaces (e.g., graphite), which have limited surface area and active sites, resulting in suboptimal HO production. In this study, we demonstrate the enhanced efficiency of microbial HO synthesis using three-dimensional (3D) electrodes produced through additive manufacturing technology due to their larger surface area than conventional carbon electrodes with 2D surfaces. This work innovatively combines 3D printed pyrolytic carbon (3D PyrC) electrodes with highly defined outer geometry and internal mesh structures derived from additive manufacturing with high-temperature resin precursors followed by pyrolysis with microbial electrochemical platform technology to achieve efficient HO synthesis. The 3D PyrC electrode produced a maximum of 129.2 mg L of HO in 12 h, which was 2.3-6.9 times greater than conventional electrodes (e.g., graphite and carbon felt). Furthermore, the scalability, reusability and mechanical properties of the 3D PyrC electrode were exemplary, showcasing its practical viability for large-scale applications. Beyond HO synthesis, the study explored the application of the 3D PyrC electrode in the bio-electro-Fenton process, demonstrating its efficacy as a tertiary treatment technology for the removal of micropollutants. This dual functionality underscores the versatility of the 3D PyrC electrode in addressing both the synthesis of valuable chemicals and environmental remediation. This study shows a novel electrode design for efficient, sustainable synthesis of HO and subsequent environmental remediation.

摘要

通过微生物电合成生产过氧化氢是一种具有成本效益且环境友好的替代方法,可替代成本高昂且对环境有害的蒽醌法。然而,大多数研究依赖于具有二维(2D)表面的碳电极(例如石墨),其表面积和活性位点有限,导致过氧化氢产量不理想。在本研究中,我们证明了使用通过增材制造技术生产的三维(3D)电极可提高微生物合成过氧化氢的效率,因为其表面积比具有二维表面的传统碳电极更大。这项工作创新性地将3D打印的热解碳(3D PyrC)电极与高度精确的外部几何形状和内部网状结构相结合,这些结构源自使用高温树脂前体的增材制造,随后通过微生物电化学平台技术进行热解,以实现高效的过氧化氢合成。3D PyrC电极在12小时内最多可产生129.2毫克/升的过氧化氢,比传统电极(例如石墨和碳毡)高出2.3至6.9倍。此外,3D PyrC电极的可扩展性、可重复使用性和机械性能堪称典范,展示了其在大规模应用中的实际可行性。除了过氧化氢合成之外,该研究还探索了3D PyrC电极在生物电芬顿过程中的应用,证明了其作为去除微污染物的三级处理技术的有效性。这种双重功能突出了3D PyrC电极在合成有价值化学品和环境修复方面的多功能性。这项研究展示了一种新颖的电极设计,用于高效、可持续地合成过氧化氢以及随后的环境修复。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验