Suppr超能文献

基于聚合物/碳纳米材料、采用熔融沉积建模(FDM)方法制备的导电3D打印电极作为新兴电化学传感装置的最新进展。

Recent progress of conductive 3D-printed electrodes based upon polymers/carbon nanomaterials using a fused deposition modelling (FDM) method as emerging electrochemical sensing devices.

作者信息

Omar Muhamad Huzaifah, Razak Khairunisak Abdul, Ab Wahab Mohd Nadhir, Hamzah Hairul Hisham

机构信息

School of Chemical Sciences, Universiti Sains Malaysia (USM) 11800 Gelugor Penang Malaysia

Nanobiotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia 11800 Gelugor Penang Malaysia.

出版信息

RSC Adv. 2021 May 6;11(27):16557-16571. doi: 10.1039/d1ra01987b. eCollection 2021 Apr 30.

Abstract

3D-printing or additive manufacturing is presently an emerging technology in the fourth industrial revolution that promises to reshape traditional manufacturing processes. The electrochemistry field can undoubtedly take advantage of this technology to fabricate electrodes to create a new generation of electrode sensor devices that could replace conventionally manufactured electrodes; glassy carbon, screen-printed carbon and carbon composite electrodes. In the electrochemistry research area, studies to date show that there is a demand for electrically 3D printable conductive polymer/carbon nanomaterial filaments where these materials can be printed out through an extrusion process based upon the fused deposition modelling (FDM) method. FDM could be used to manufacture novel electrochemical 3D printed electrode sensing devices for electrochemical sensor and biosensor applications. This is due to the FDM method being the most affordable 3D printing technique since conductive and non-conductive thermoplastic filaments are commercially available. Therefore, in this minireview, we focus on only the most outstanding studies that have been published since 2018. We believe this to be a highly-valuable research area to the scientific community, both in academia and industry, to enable novel ideas, materials, designs and methods relating to electroanalytical sensing devices to be generated. This approach has the potential to create a new generation of electrochemical sensing devices based upon additive manufacturing. This minireview also provides insight into how the research community could improve the electrochemical performance of 3D-printed electrodes to significantly increase the sensitivity of the 3D-printed electrodes as electrode sensing devices.

摘要

3D打印或增材制造是当下第四次工业革命中的一项新兴技术,有望重塑传统制造工艺。电化学领域无疑可以利用这项技术来制造电极,从而创造出新一代电极传感设备,以取代传统制造的电极,如玻碳电极、丝网印刷碳电极和碳复合电极。在电化学研究领域,迄今为止的研究表明,对可电3D打印的导电聚合物/碳纳米材料细丝存在需求,这些材料可以通过基于熔融沉积建模(FDM)方法的挤出工艺打印出来。FDM可用于制造用于电化学传感器和生物传感器应用的新型电化学3D打印电极传感设备。这是因为FDM方法是最经济实惠的3D打印技术,因为导电和非导电热塑性细丝都有商业供应。因此,在本综述中,我们仅关注自2018年以来发表的最杰出的研究。我们认为这对学术界和工业界的科学界来说都是一个极具价值的研究领域,能够催生与电分析传感设备相关的新想法、材料、设计和方法。这种方法有可能基于增材制造创造出新一代电化学传感设备。本综述还深入探讨了研究界如何提高3D打印电极的电化学性能,以显著提高3D打印电极作为电极传感设备的灵敏度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a9a/9031910/e810e2284ced/d1ra01987b-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验