Khan Haider, Savvopoulos Symeon, Janajreh Isam
Mechanical Engineering Department, Khalifa University, Abu Dhabi, United Arab Emirates; Center for Membranes and Advanced Water Technology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
Mechanical Engineering Department, Khalifa University, Abu Dhabi, United Arab Emirates; Center for Membranes and Advanced Water Technology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
Environ Res. 2024 May 15;249:118463. doi: 10.1016/j.envres.2024.118463. Epub 2024 Feb 10.
During gasification the kinetic and thermodynamic parameter depend on both the feedstock and the process conditions. As a result, one needs to enhance the understanding of how to model numerically these parameters using thermogravimetric analyzer. Consequently, there exists a pressing need to computationally devise gasification model that can efficiently account to thermodynamic and kinetic parameter from thermogravimetric data. In this study, we numerically model gasification process kinetic and thermodynamic parameters, which vary with feedstock and operational conditions. Our novel approach involves creating an ANN model in MATLAB using a carefully optimized 8-20-20-10-1 architecture. Based on thermogravimetric analyzer (TGA) data, this model uniquely predicts critical kinetic (activation energy, pre-exponential factor) and thermodynamic parameters (entropy, enthalpy, Gibbs free energy, ignition index, boiling temperature). Our ANN model, trained on over 80 diverse samples with the Levenberg-Marquardt algorithm, excels at prediction, with an MSE of 6.185e and an R value exceeding 0.9996, ensuring highly accurate estimates. Based on time, temperature, heating rate, and elemental composition, it accurately predicts thermal degradation. The model can predict TGA curves for many materials, demonstrating its versatility. For instance, it accurately estimates the activation energy for pure glycerol at 73.84 kJ/mol, crude glycerol at 67.55 kJ/mol, 12.12 kJ/mol for coal, and 111.3 kJ/mol for wood. These results, particularly for Kissinger-validated glycerol, demonstrate the model's versatility and efficacy in various gasification scenarios, making it a valuable tool for thermochemical conversion studies.
在气化过程中,动力学和热力学参数取决于原料和工艺条件。因此,人们需要加深对如何使用热重分析仪对这些参数进行数值建模的理解。因此,迫切需要通过计算设计出能够有效考虑热重数据中的热力学和动力学参数的气化模型。在本研究中,我们对随原料和操作条件而变化的气化过程动力学和热力学参数进行了数值建模。我们的新方法包括在MATLAB中使用精心优化的8-20-20-10-1架构创建一个人工神经网络(ANN)模型。基于热重分析仪(TGA)数据,该模型独特地预测了关键动力学参数(活化能、指前因子)和热力学参数(熵、焓、吉布斯自由能、着火指数、沸点温度)。我们的人工神经网络模型使用Levenberg-Marquardt算法在80多个不同样本上进行训练,在预测方面表现出色,均方误差为6.185e,R值超过0.9996,确保了高度准确的估计。基于时间、温度、加热速率和元素组成,它能够准确预测热降解。该模型可以预测许多材料的TGA曲线,证明了其通用性。例如,它准确估计纯甘油的活化能为73.84 kJ/mol,粗甘油为67.55 kJ/mol,煤为12.12 kJ/mol,木材为111.3 kJ/mol。这些结果,特别是经过基辛格法验证的甘油结果,证明了该模型在各种气化场景中的通用性和有效性,使其成为热化学转化研究的宝贵工具。