Singh Pritpal, Kumar Rakesh, Gupta Meenu, Al-Turjman Fadi
Department of Computer Science & Engineering, Chandigarh University, Punjab 140413, India.
Artificial Intelligence Engineering Dept., AI and Robotics Institute, Near East University, Nicosia, Mersin 10, Turkey.
Curr Med Imaging. 2024 Feb 9. doi: 10.2174/0115734056278974231211102917.
Breast Cancer (BC) is a significant threat affecting women globally. An accurate and reliable disease classification method is required to get an early diagnosis. However, existing approaches lack accurate and robust classification.
This study aims to design a model to classify BC Histopathology images accurately by leveraging segmentation techniques.
This work proposes a combined segmentation and classification approach for classifying BC using histopathology images to address these issues. Chan-Vese algorithm is used for segmentation to accurately delineate regions of interest within the histopathology images, followed by the proposed SegEIR-Net (Segmentation using EfficientNet, InceptionNet, and ResNet) for classification. Bilateral Filtering is also employed for noise reduction. The proposed model uses three significant networks, ResNet, InceptionNet, and EfficientNet, concatenates the outputs from each block followed by Dense and Dropout layers. The model is trained on the breakHis dataset for four different magnifications and tested on BACH (BreAst Cancer Histology) and UCSB (University of California, Santa Barbara) datasets.
SegEIR-Net performs better than the existing State-of-the-Art (SOTA) methods in terms of accuracy on all three datasets, proving the robustness of the proposed model. The accuracy achieved on breakHis dataset are 98.66%, 98.39%, 97.52%, 95.22% on different magnifications, and 93.33% and 96.55% on BACH and UCSB datasets.
These performance results indicate the robustness of the proposed SegEIR-Net framework in accurately classifying BC from histopathology images.
乳腺癌(BC)是对全球女性的重大威胁。需要一种准确可靠的疾病分类方法来进行早期诊断。然而,现有方法缺乏准确且稳健的分类。
本研究旨在设计一种模型,通过利用分割技术准确分类乳腺癌组织病理学图像。
这项工作提出了一种结合分割和分类的方法,使用组织病理学图像对乳腺癌进行分类以解决这些问题。使用Chan-Vese算法进行分割,以准确勾勒组织病理学图像中的感兴趣区域,然后使用提出的SegEIR-Net(使用EfficientNet、InceptionNet和ResNet进行分割)进行分类。还采用双边滤波进行降噪。所提出的模型使用三个重要的网络,即ResNet、InceptionNet和EfficientNet,连接每个块的输出,随后是密集层和随机失活层。该模型在breakHis数据集上针对四种不同放大倍数进行训练,并在BACH(乳腺癌组织学)和UCSB(加利福尼亚大学圣巴巴拉分校)数据集上进行测试。
在所有三个数据集上,SegEIR-Net在准确性方面均优于现有的最先进(SOTA)方法,证明了所提出模型的稳健性。在breakHis数据集上不同放大倍数下实现的准确率分别为98.66%、98.39%、97.52%、95.22%,在BACH和UCSB数据集上分别为93.33%和96.55%。
这些性能结果表明所提出的SegEIR-Net框架在从组织病理学图像中准确分类乳腺癌方面具有稳健性。