文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

.

.

作者信息

Govindharaj I, Deva Priya W, Soujanya K L S, Senthilkumar K P, Shantha Shalini K, Ravichandran S

机构信息

Department of Computer Science and Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu, 600062, India.

Department of Computer Science and Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 602105, India.

出版信息

Int Ophthalmol. 2025 Jun 27;45(1):266. doi: 10.1007/s10792-025-03602-6.


DOI:10.1007/s10792-025-03602-6
PMID:40576831
Abstract

UNLABELLED: Early detection of glaucoma represents a vital factor in securing vision while the disease retains its position as one of the central causes of blindness worldwide. The current glaucoma screening strategies with expert interpretation depend on complex and time-consuming procedures which slow down both diagnosis processes and intervention timing. This research adopts a complex automated glaucoma diagnostic system that combines optimized segmentation solutions together with classification platforms. The proposed segmentation approach implements an enhanced version of U-Net++ using dynamic parameter control provided by GWO to segment optic disc and cup regions in retinal fundus images. Through the implementation of GWO the algorithm uses wolf-pack hunting strategies to adjust parameters dynamically which enables it to locate diverse textural patterns inside images. The system uses a CapsNet capsule network for classification because it maintains visual spatial organization to detect glaucoma-related patterns precisely. The developed system secures an evaluation accuracy of 95.1% in segmentation and classification tasks better than typical approaches. The automated system eliminates and enhances clinical diagnostic speed as well as diagnostic precision. The tool stands out because of its supreme detection accuracy and reliability thus making it an essential clinical early-stage glaucoma diagnostic system and a scalable healthcare deployment solution. PURPOSE: To develop an advanced automated glaucoma diagnostic system by integrating an optimized U-Net++ segmentation model with a Capsule Network (CapsNet) classifier, enhanced through Grey Wolf Optimization Algorithm (GWOA), for precise segmentation of optic disc and cup regions and accurate glaucoma classification from retinal fundus images. METHODS: This study proposes a two-phase computer-assisted diagnosis (CAD) framework. In the segmentation phase, an enhanced U-Net++ model, optimized by GWOA, is employed to accurately delineate the optic disc and cup regions in fundus images. The optimization dynamically tunes hyperparameters based on grey wolf hunting behavior for improved segmentation precision. In the classification phase, a CapsNet architecture is used to maintain spatial hierarchies and effectively classify images as glaucomatous or normal based on segmented outputs. The performance of the proposed model was validated using the ORIGA retinal fundus image dataset, and evaluated against conventional approaches. RESULTS: The proposed GWOA-UNet++ and CapsNet framework achieved a segmentation and classification accuracy of 95.1%, outperforming existing benchmark models such as MTA-CS, ResFPN-Net, DAGCN, MRSNet and AGCT. The model demonstrated robustness against image irregularities, including variations in optic disc size and fundus image quality, and showed superior performance across accuracy, sensitivity, specificity, precision, and F1-score metrics. CONCLUSION: The developed automated glaucoma detection system exhibits enhanced diagnostic accuracy, efficiency, and reliability, offering significant potential for early-stage glaucoma detection and clinical decision support. Future work will involve large-scale multi-ethnic dataset validation, integration with clinical workflows, and deployment as a mobile or cloud-based screening tool.

摘要

未标注:青光眼的早期检测是保障视力的关键因素,因为该疾病仍是全球失明的主要原因之一。当前依赖专家解读的青光眼筛查策略需要复杂且耗时的程序,这减缓了诊断过程和干预时机。本研究采用了一种复杂的自动化青光眼诊断系统,该系统将优化的分割解决方案与分类平台相结合。所提出的分割方法采用了U-Net++的增强版本,利用灰狼优化算法(GWO)提供的动态参数控制来分割眼底图像中的视盘和视杯区域。通过实施GWO,该算法采用狼群狩猎策略动态调整参数,使其能够定位图像中的各种纹理模式。该系统使用胶囊网络(CapsNet)进行分类,因为它能保持视觉空间组织,精确检测与青光眼相关的模式。所开发的系统在分割和分类任务中确保了95.1%的评估准确率,优于典型方法。该自动化系统提高了临床诊断速度和诊断精度。该工具因其极高的检测准确率和可靠性而脱颖而出,因此使其成为重要的临床早期青光眼诊断系统和可扩展的医疗保健部署解决方案。 目的:通过集成优化的U-Net++分割模型和胶囊网络(CapsNet)分类器,开发一种先进的自动化青光眼诊断系统,并通过灰狼优化算法(GWOA)进行增强,以精确分割视盘和视杯区域,并从眼底图像中准确进行青光眼分类。 方法:本研究提出了一个两阶段的计算机辅助诊断(CAD)框架。在分割阶段,采用经GWOA优化的增强型U-Net++模型,准确勾勒眼底图像中的视盘和视杯区域。优化过程基于灰狼狩猎行为动态调整超参数,以提高分割精度。在分类阶段,使用CapsNet架构保持空间层次,并根据分割输出有效地将图像分类为青光眼或正常。使用ORIGA眼底图像数据集对所提出模型的性能进行验证,并与传统方法进行评估比较。 结果:所提出的GWOA-UNet++和CapsNet框架实现了95.1%的分割和分类准确率,优于现有基准模型,如MTA-CS、ResFPN-Net、DAGCN、MRSNet和AGCT。该模型对图像不规则性具有鲁棒性,包括视盘大小和眼底图像质量的变化,并在准确率、灵敏度、特异性、精度和F1分数指标上表现出卓越性能。 结论:所开发的自动化青光眼检测系统具有更高的诊断准确率、效率和可靠性,在早期青光眼检测和临床决策支持方面具有巨大潜力。未来的工作将包括大规模多民族数据集验证、与临床工作流程集成以及作为移动或基于云的筛查工具进行部署。

相似文献

[1]
.

Int Ophthalmol. 2025-6-27

[2]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[3]
Grey wolf optimization technique with U-shaped and capsule networks-A novel framework for glaucoma diagnosis.

MethodsX. 2025-3-31

[4]
Accuracy of Using Generative Adversarial Networks for Glaucoma Detection: Systematic Review and Bibliometric Analysis.

J Med Internet Res. 2021-9-21

[5]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[6]
Artificial intelligence for detecting keratoconus.

Cochrane Database Syst Rev. 2023-11-15

[7]
Development and evaluation of customized software to automatically align macula and optic disc centered scanning laser ophthalmoscope fundus images.

PeerJ Comput Sci. 2025-4-1

[8]
Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy.

Cochrane Database Syst Rev. 2011-7-6

[9]
Implementation of biomedical segmentation for brain tumor utilizing an adapted U-net model.

Comput Biol Med. 2025-8

[10]
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

Health Technol Assess. 2006-9

本文引用的文献

[1]
Capsule network-based deep learning for early and accurate diabetic retinopathy detection.

Int Ophthalmol. 2025-2-18

[2]
Enhancing glaucoma diagnosis: Generative adversarial networks in synthesized imagery and classification with pretrained MobileNetV2.

MethodsX. 2024-12-18

[3]
The Application of Deep Learning for the Segmentation and Classification of Coronary Arteries.

Diagnostics (Basel). 2023-7-5

[4]
Automatic Detection of Microaneurysms in Fundus Images Using an Ensemble-Based Segmentation Method.

Sensors (Basel). 2023-3-24

[5]
Deep learning-based medical image segmentation of the aorta using XR-MSF-U-Net.

Comput Methods Programs Biomed. 2022-10

[6]
Glaucoma detection using image processing techniques: A literature review.

Comput Med Imaging Graph. 2019-10-10

[7]
A Large-Scale Database and a CNN Model for Attention-Based Glaucoma Detection.

IEEE Trans Med Imaging. 2019-7-8

[8]
Disc-Aware Ensemble Network for Glaucoma Screening From Fundus Image.

IEEE Trans Med Imaging. 2018-5-15

[9]
Fully Convolutional Networks for Semantic Segmentation.

IEEE Trans Pattern Anal Mach Intell. 2016-5-24

[10]
Representation learning: a review and new perspectives.

IEEE Trans Pattern Anal Mach Intell. 2013-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索