文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

小梁、韧带-椎间盘和小关节系统的作用:L4-S1椎体的有限元分析

The Role of Trabecular, Ligamentous-Intervertebral Disk and Facet Joints Systems: A Finite Element Analysis in the L4-S1 Vertebrae.

作者信息

Guerrero-Vargas José Alejandro, Sanchez-Quinones Pablo, Pinzón Brayan Felipe, Vélez-Muriel Melisa, Madriñan-Navia Humberto, Laverde-Frade Leonardo

机构信息

Neurosurgery Research and Training Center - CIEN, Hospital Universitario de la Samaritana, Bogotá, Colombia.

Postgraduate Department, Universidad ECCI, Bogotá, Colombia.

出版信息

Global Spine J. 2025 Mar;15(2):1212-1228. doi: 10.1177/21925682241231525. Epub 2024 Feb 12.


DOI:10.1177/21925682241231525
PMID:38343310
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11571555/
Abstract

STUDY DESIGN: Descriptive. OBJECTIVES: Trabecular bone in the vertebrae is critical for the distribution of load and stress throughout the neuroaxis, as well as the intervertebral disk, ligamentous complex, and facet joints. The objective was to assess the stress and strain distribution of the L4-S1 spine segment by a finite element analysis. METHODS: A lumbosacral spine model was built based on a CT-Scan. Trabecular-to-cortical bone distribution, ligaments, intervertebral disk, and facet joints with cartilage were included. A perpendicular force was applied over the L4 upper terminal plate of 300 N, 460 N and 600 N in neutral, plus 5 Nm and 7.5 Nm for flexion and extension movements. Maximum principal stress and total deformation were the main studied variables. RESULTS: Trabecular bone confers resistance to axial loads on the vertebrae by elastic capacity and stress distribution. MPS and TD showed axial stress attenuation in the nucleus pulposus and longitudinal ligaments, as well as load distribution capacity. Facet joints and discontinuous ligaments showed greater TD values in flexion moments but greater MPS values in extension, conferring stability to the lumbosacral junction and axial load distribution. CONCLUSION: We propose 3 anatomical systems for axial load distribution and stress attenuation in the lumbosacral junction. Trabecular bone distributes loads, while the ligamentous-intervertebral disk transmits and attenuate axial stress. Facet joints and discontinuous ligaments act as stabilizers for flexion and extension postures. Overall, the relationship between trabecular bone, ligamentous-intervertebral disk complex and facet joints is necessary for an efficient load distribution and segmental axial stress reduction.This slide can be retrieved from the Global Spine Congress 2023.

摘要

研究设计:描述性研究。 目的:椎体中的小梁骨对于整个神经轴以及椎间盘、韧带复合体和小关节的负荷与应力分布至关重要。目的是通过有限元分析评估L4-S1脊柱节段的应力和应变分布。 方法:基于CT扫描构建腰骶部脊柱模型。纳入小梁骨与皮质骨的分布、韧带、椎间盘以及带有软骨的小关节。在中立位时,分别对L4上终板施加300 N、460 N和600 N的垂直力,在屈伸运动时分别施加5 Nm和7.5 Nm的力。最大主应力和总变形是主要研究变量。 结果:小梁骨通过弹性能力和应力分布赋予椎体抵抗轴向负荷的能力。最大主应力和总变形显示髓核和纵韧带中的轴向应力衰减以及负荷分布能力。小关节和不连续韧带在屈曲时显示出更大的总变形值,但在伸展时显示出更大的最大主应力值,赋予腰骶关节稳定性和轴向负荷分布。 结论:我们提出了3种用于腰骶关节轴向负荷分布和应力衰减的解剖系统。小梁骨分布负荷,而韧带-椎间盘传递并衰减轴向应力。小关节和不连续韧带在屈伸姿势中起稳定作用。总体而言,小梁骨、韧带-椎间盘复合体和小关节之间的关系对于有效的负荷分布和节段性轴向应力降低是必要的。此幻灯片可从2023年全球脊柱大会获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/0853bc3722ff/10.1177_21925682241231525-fig19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/9cf6de70cd16/10.1177_21925682241231525-img01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/cf5316179098/10.1177_21925682241231525-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/6c9805e0ae61/10.1177_21925682241231525-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/b35eefd681e6/10.1177_21925682241231525-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/7a6e577a7537/10.1177_21925682241231525-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/e722c368620d/10.1177_21925682241231525-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/742901ff49cb/10.1177_21925682241231525-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/8039f59030d0/10.1177_21925682241231525-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/0de0746d801e/10.1177_21925682241231525-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/3a5ebea4d0b8/10.1177_21925682241231525-fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/54126f0c0538/10.1177_21925682241231525-fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/ef46fc8b078d/10.1177_21925682241231525-fig11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/bc9a5a25f709/10.1177_21925682241231525-fig12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/59005391927e/10.1177_21925682241231525-fig13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/8ec415229471/10.1177_21925682241231525-fig14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/0782a74ed8e8/10.1177_21925682241231525-fig15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/db81c6f5846e/10.1177_21925682241231525-fig16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/93c7816396f3/10.1177_21925682241231525-fig17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/50db4f68c8d0/10.1177_21925682241231525-fig18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/0853bc3722ff/10.1177_21925682241231525-fig19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/9cf6de70cd16/10.1177_21925682241231525-img01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/cf5316179098/10.1177_21925682241231525-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/6c9805e0ae61/10.1177_21925682241231525-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/b35eefd681e6/10.1177_21925682241231525-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/7a6e577a7537/10.1177_21925682241231525-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/e722c368620d/10.1177_21925682241231525-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/742901ff49cb/10.1177_21925682241231525-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/8039f59030d0/10.1177_21925682241231525-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/0de0746d801e/10.1177_21925682241231525-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/3a5ebea4d0b8/10.1177_21925682241231525-fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/54126f0c0538/10.1177_21925682241231525-fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/ef46fc8b078d/10.1177_21925682241231525-fig11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/bc9a5a25f709/10.1177_21925682241231525-fig12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/59005391927e/10.1177_21925682241231525-fig13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/8ec415229471/10.1177_21925682241231525-fig14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/0782a74ed8e8/10.1177_21925682241231525-fig15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/db81c6f5846e/10.1177_21925682241231525-fig16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/93c7816396f3/10.1177_21925682241231525-fig17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/50db4f68c8d0/10.1177_21925682241231525-fig18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/11877607/0853bc3722ff/10.1177_21925682241231525-fig19.jpg

相似文献

[1]
The Role of Trabecular, Ligamentous-Intervertebral Disk and Facet Joints Systems: A Finite Element Analysis in the L4-S1 Vertebrae.

Global Spine J. 2025-3

[2]
On the load-sharing along the ligamentous lumbosacral spine in flexed and extended postures: Finite element study.

J Biomech. 2016-4-11

[3]
Analyzing isolated degeneration of lumbar facet joints: implications for degenerative instability and lumbar biomechanics using finite element analysis.

Front Bioeng Biotechnol. 2024-3-27

[4]
Biomechanical Effect of L -L Intervertebral Disc Degeneration on the Lower Lumbar Spine: A Finite Element Study.

Orthop Surg. 2020-6

[5]
Biomechanical Comparison of a Novel Facet Joint Fusion Fixation Device With Conventional Pedicle Screw Fixation Device: A Finite Element Analysis.

Orthop Surg. 2025-4

[6]
Effect of an artificial disc on lumbar spine biomechanics: a probabilistic finite element study.

Eur Spine J. 2009-1

[7]
Investigation of impact loading rate effects on the ligamentous cervical spinal load-partitioning using finite element model of functional spinal unit C2-C3.

J Biomech. 2014-9-22

[8]
The biomechanical effect on the adjacent L4/L5 segment of S1 superior facet arthroplasty: a finite element analysis for the male spine.

J Orthop Surg Res. 2021-6-17

[9]
The effect of follower load on the range of motion, facet joint force, and intradiscal pressure of the cervical spine: a finite element study.

Med Biol Eng Comput. 2020-8

[10]
Biomechanical changes of degenerated adjacent segment and intact lumbar spine after lumbosacral topping-off surgery: a three-dimensional finite element analysis.

BMC Musculoskelet Disord. 2020-2-15

本文引用的文献

[1]
Mechanical loading of cranial joints minimizes the craniofacial phenotype in Crouzon syndrome.

Sci Rep. 2022-6-11

[2]
Biomechanical finite element analysis of superior endplate collapse after thoracolumbar fracture surgery.

Ann Transl Med. 2020-6

[3]
Effects of lumbo-pelvic rhythm on trunk muscle forces and disc loads during forward flexion: A combined musculoskeletal and finite element simulation study.

J Biomech. 2019-1-3

[4]
The Mechanical Role of the Radial Fiber Network Within the Annulus Fibrosus of the Lumbar Intervertebral Disc: A Finite Elements Study.

J Biomech Eng. 2019-2-1

[5]
Load-sharing in the lumbosacral spine in neutral standing & flexed postures - A combined finite element and inverse static study.

J Biomech. 2018-3-21

[6]
The Effects of Physiological Biomechanical Loading on Intradiscal Pressure and Annulus Stress in Lumbar Spine: A Finite Element Analysis.

J Healthc Eng. 2017-8-27

[7]
Lumbar spine finite element model for healthy subjects: development and validation.

Comput Methods Biomech Biomed Engin. 2017-1

[8]
On the load-sharing along the ligamentous lumbosacral spine in flexed and extended postures: Finite element study.

J Biomech. 2016-4-11

[9]
A finite element model of the L4-L5-S1 human spine segment including the heterogeneity and anisotropy of the discs.

Acta Bioeng Biomech. 2015

[10]
Stress Reduction in Adjacent Level Discs via Dynamic Instrumentation: A Finite Element Analysis.

SAS J. 2007-5-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索