Guerrero-Vargas José Alejandro, Sanchez-Quinones Pablo, Pinzón Brayan Felipe, Vélez-Muriel Melisa, Madriñan-Navia Humberto, Laverde-Frade Leonardo
Neurosurgery Research and Training Center - CIEN, Hospital Universitario de la Samaritana, Bogotá, Colombia.
Postgraduate Department, Universidad ECCI, Bogotá, Colombia.
Global Spine J. 2025 Mar;15(2):1212-1228. doi: 10.1177/21925682241231525. Epub 2024 Feb 12.
STUDY DESIGN: Descriptive. OBJECTIVES: Trabecular bone in the vertebrae is critical for the distribution of load and stress throughout the neuroaxis, as well as the intervertebral disk, ligamentous complex, and facet joints. The objective was to assess the stress and strain distribution of the L4-S1 spine segment by a finite element analysis. METHODS: A lumbosacral spine model was built based on a CT-Scan. Trabecular-to-cortical bone distribution, ligaments, intervertebral disk, and facet joints with cartilage were included. A perpendicular force was applied over the L4 upper terminal plate of 300 N, 460 N and 600 N in neutral, plus 5 Nm and 7.5 Nm for flexion and extension movements. Maximum principal stress and total deformation were the main studied variables. RESULTS: Trabecular bone confers resistance to axial loads on the vertebrae by elastic capacity and stress distribution. MPS and TD showed axial stress attenuation in the nucleus pulposus and longitudinal ligaments, as well as load distribution capacity. Facet joints and discontinuous ligaments showed greater TD values in flexion moments but greater MPS values in extension, conferring stability to the lumbosacral junction and axial load distribution. CONCLUSION: We propose 3 anatomical systems for axial load distribution and stress attenuation in the lumbosacral junction. Trabecular bone distributes loads, while the ligamentous-intervertebral disk transmits and attenuate axial stress. Facet joints and discontinuous ligaments act as stabilizers for flexion and extension postures. Overall, the relationship between trabecular bone, ligamentous-intervertebral disk complex and facet joints is necessary for an efficient load distribution and segmental axial stress reduction.This slide can be retrieved from the Global Spine Congress 2023.
研究设计:描述性研究。 目的:椎体中的小梁骨对于整个神经轴以及椎间盘、韧带复合体和小关节的负荷与应力分布至关重要。目的是通过有限元分析评估L4-S1脊柱节段的应力和应变分布。 方法:基于CT扫描构建腰骶部脊柱模型。纳入小梁骨与皮质骨的分布、韧带、椎间盘以及带有软骨的小关节。在中立位时,分别对L4上终板施加300 N、460 N和600 N的垂直力,在屈伸运动时分别施加5 Nm和7.5 Nm的力。最大主应力和总变形是主要研究变量。 结果:小梁骨通过弹性能力和应力分布赋予椎体抵抗轴向负荷的能力。最大主应力和总变形显示髓核和纵韧带中的轴向应力衰减以及负荷分布能力。小关节和不连续韧带在屈曲时显示出更大的总变形值,但在伸展时显示出更大的最大主应力值,赋予腰骶关节稳定性和轴向负荷分布。 结论:我们提出了3种用于腰骶关节轴向负荷分布和应力衰减的解剖系统。小梁骨分布负荷,而韧带-椎间盘传递并衰减轴向应力。小关节和不连续韧带在屈伸姿势中起稳定作用。总体而言,小梁骨、韧带-椎间盘复合体和小关节之间的关系对于有效的负荷分布和节段性轴向应力降低是必要的。此幻灯片可从2023年全球脊柱大会获取。
Comput Methods Biomech Biomed Engin. 2017-1