Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA.
Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA.
J Dent Res. 2024 Mar;103(3):318-328. doi: 10.1177/00220345231222173. Epub 2024 Feb 12.
Interferon regulatory factor 8 (IRF8), a transcription factor expressed in immune cells, functions as a negative regulator of osteoclasts and helps maintain dental and skeletal homeostasis. Previously, we reported that a novel mutation in the gene increases susceptibility to multiple idiopathic cervical root resorption (MICRR), a form of tooth root resorption mediated by increased osteoclast activity. The IRF8 G388S variant in the highly conserved C-terminal motif is predicted to alter the protein structure, likely impairing IRF8 function. To investigate the molecular basis of MICRR and IRF8 function in osteoclastogenesis, we generated knock-in () mice using CRISPR/Cas9 technique modeling the human mutation. The heterozygous (Het) and homozygous (Homo) mice showed no gross morphological defects, and the development of hematopoietic cells was unaffected and similar to wild-type (WT) mice. The Het and Homo mice showed no difference in macrophage gene signatures important for antimicrobial defenses and inflammatory cytokine production. Consistent with the phenotype observed in MICRR patients, Het and Homo mice demonstrated significantly increased osteoclast formation and resorption activity in vivo and in vitro when compared to WT mice. The oral ligature-inserted Het and Homo mice displayed significantly increased root resorption and osteoclast-mediated alveolar bone loss compared to WT mice. The increased osteoclastogenesis noted in mice is due to the inability of mutation to inhibit NFATc1-dependent transcriptional activation and downstream osteoclast specific transcripts, as well as its impact on autophagy-related pathways of osteoclast differentiation. This translational study delineates the IRF8 domain important for osteoclast function and provides novel insights into the mutation associated with MICRR. mutation mainly affects osteoclastogenesis while sparing immune cell development and function. These insights extend beyond oral health and significantly advance our understanding of skeletal disorders mediated by increased osteoclast activity and IRF8's role in osteoclastogenesis.
干扰素调节因子 8(IRF8)是一种在免疫细胞中表达的转录因子,作为破骨细胞的负调节剂,有助于维持牙齿和骨骼的内稳态。此前,我们报道了 基因中的一种新突变会增加多种特发性颈神经根吸收(MICRR)的易感性,MICRR 是一种由破骨细胞活性增加介导的牙齿根部吸收形式。高度保守的 C 末端基序中的 IRF8 G388S 变体预计会改变蛋白质结构,可能会损害 IRF8 功能。为了研究 MICRR 和 IRF8 在破骨细胞发生中的分子基础,我们使用 CRISPR/Cas9 技术构建了 基因敲入()小鼠,模拟人类 突变。杂合子(Het)和纯合子(Homo) 小鼠没有明显的形态缺陷,造血细胞的发育与野生型(WT)小鼠相似且不受影响。Het 和 Homo 小鼠的巨噬细胞基因特征没有差异,这些基因特征对于抗菌防御和炎症细胞因子的产生很重要。与 MICRR 患者观察到的表型一致,与 WT 小鼠相比,Het 和 Homo 小鼠在体内和体外表现出明显增加的破骨细胞形成和吸收活性。与 WT 小鼠相比,插入口腔结扎的 Het 和 Homo 小鼠显示出明显增加的牙根吸收和破骨细胞介导的牙槽骨丢失。在 小鼠中观察到的破骨细胞发生增加是由于 突变无法抑制 NFATc1 依赖性转录激活和下游破骨细胞特异性转录本,以及其对破骨细胞分化的自噬相关途径的影响。这项转化研究描绘了对破骨细胞功能很重要的 IRF8 结构域,并为与 MICRR 相关的 突变提供了新的见解。 突变主要影响破骨细胞发生,而不影响免疫细胞的发育和功能。这些见解不仅限于口腔健康,还极大地促进了我们对由破骨细胞活性增加介导的骨骼疾病以及 IRF8 在破骨细胞发生中的作用的理解。