Suppr超能文献

基于缺氧信息的 RBE 加权束流方向优化在调强质子治疗中的应用。

Hypoxia-informed RBE-weighted beam orientation optimization for intensity modulated proton therapy.

机构信息

Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California, USA.

Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA.

出版信息

Med Phys. 2024 Mar;51(3):2320-2333. doi: 10.1002/mp.16978. Epub 2024 Feb 12.

Abstract

BACKGROUND

Variable relative biological effectiveness (RBE) models in treatment planning have been proposed to optimize the therapeutic ratio of proton therapy. It has been reported that proton RBE decreases with increasing tumor oxygen level, offering an opportunity to address hypoxia-related radioresistance with RBE-weighted optimization.

PURPOSE

Here, we obtain a voxel-level estimation of partial oxygen pressure to weigh RBE values in a single biologically informed beam orientation optimization (BOO) algorithm.

METHODS

Three glioblastoma patients with [ F]-fluoromisonidazole (FMISO)-PET/CT images were selected from the institutional database. Oxygen values were derived from tracer uptake using a nonlinear least squares curve fitting. McNamara RBE, calculated from proton dose, was then weighed using oxygen enhancement ratios (OER) for each voxel and incorporated into the dose fidelity term of the BOO algorithm. The nonlinear optimization problem was solved using a split-Bregman approach, with FISTA as the solver. The proposed hypoxia informed RBE-weighted method (HypRBE) was compared to dose fidelity terms using the constant RBE of 1.1 (cRBE) and the normoxic McNamara RBE model (RegRBE). Tumor homogeneity index (HI), maximum biological dose (Dmax), and D95%, as well as OAR therapeutic index (TI = gEUD /gEUD ) were evaluated along with worst-case statistics after normalization to normal tissue isotoxicity.

RESULTS

Compared to [cRBE, RegRBE], HypRBE increased tumor HI, Dmax, and D95% across all plans by on average [31.3%, 31.8%], [48.6%, 27.1%], and [50.4%, 23.8%], respectively. In the worst-case scenario, the parameters increase on average by [12.5%, 14.7%], [7.3%,-8.9%], and [22.3%, 2.1%]. Despite increased OAR Dmean and Dmax by [8.0%, 3.0%] and [13.1%, -0.1%], HypRBE increased average TI by [22.0%, 21.1%]. Worst-case OAR Dmean, Dmax, and TI worsened by [17.9%, 4.3%], [24.5%, -1.2%], and [9.6%, 10.5%], but in the best cases, HypRBE escalates tumor coverage significantly without compromising OAR dose, increasing the therapeutic ratio.

CONCLUSIONS

We have developed an optimization algorithm whose dose fidelity term accounts for hypoxia-informed RBE values. We have shown that HypRBE selects bE:\Alok\aaeams better suited to deliver high physical dose to low RBE, hypoxic tumor regions while sparing the radiosensitive normal tissue.

摘要

背景

在治疗计划中,已经提出了可变相对生物效应(RBE)模型,以优化质子治疗的治疗比。据报道,质子 RBE 随肿瘤氧水平的增加而降低,这为利用 RBE 加权优化来解决与缺氧相关的放射抵抗提供了机会。

目的

在这里,我们在单个基于生物学的束方向优化(BOO)算法中获得了部分氧压的体素级估计,以加权 RBE 值。

方法

从机构数据库中选择了 3 名患有[F]-氟代米索硝唑(FMISO)-PET/CT 图像的脑胶质瘤患者。使用非线性最小二乘曲线拟合从示踪剂摄取中得出氧值。然后,使用每个体素的氧增强比(OER)对质子剂量计算的 McNamara RBE 进行加权,并将其纳入 BOO 算法的剂量保真度项。使用分裂 Bregman 方法解决非线性优化问题,FISTA 作为求解器。将所提出的缺氧信息 RBE 加权方法(HypRBE)与使用恒定 RBE(cRBE)和常氧 McNamara RBE 模型(RegRBE)的剂量保真度项进行比较。还评估了肿瘤均匀性指数(HI)、最大生物剂量(Dmax)和 D95%,以及 OAR 治疗指数(TI=gEUD/gEUD),以及归一化为正常组织等毒性后的最坏情况统计数据。

结果

与[cRBE,RegRBE]相比,HypRBE 使所有计划中的肿瘤 HI、Dmax 和 D95% 平均分别增加[31.3%,31.8%]、[48.6%,27.1%]和[50.4%,23.8%]。在最坏情况下,这些参数平均增加[12.5%,14.7%]、[7.3%,-8.9%]和[22.3%,2.1%]。尽管 OAR 的 Dmean 和 Dmax 分别增加了[8.0%,3.0%]和[13.1%,-0.1%],但 HypRBE 使平均 TI 增加了[22.0%,21.1%]。OAR 的最坏情况 Dmean、Dmax 和 TI 恶化了[17.9%,4.3%]、[24.5%,-1.2%]和[9.6%,10.5%],但在最佳情况下,HypRBE 可显著提高肿瘤覆盖率,同时不损害 OAR 剂量,从而提高治疗比。

结论

我们已经开发了一种优化算法,其剂量保真度项考虑了缺氧信息的 RBE 值。我们已经表明,HypRBE 选择了更适合将高物理剂量输送到低 RBE、缺氧肿瘤区域的 bE:\Alok\aaeams,同时保护敏感的正常组织。

相似文献

1
Hypoxia-informed RBE-weighted beam orientation optimization for intensity modulated proton therapy.
Med Phys. 2024 Mar;51(3):2320-2333. doi: 10.1002/mp.16978. Epub 2024 Feb 12.
2
Reformulated McNamara RBE-weighted beam orientation optimization for intensity modulated proton therapy.
Med Phys. 2022 Apr;49(4):2136-2149. doi: 10.1002/mp.15552. Epub 2022 Mar 4.
3
Combined RBE and OER optimization in proton therapy with FLUKA based on EF5-PET.
J Appl Clin Med Phys. 2023 Sep;24(9):e14014. doi: 10.1002/acm2.14014. Epub 2023 May 10.
5
Robust beam orientation optimization for intensity-modulated proton therapy.
Med Phys. 2019 Aug;46(8):3356-3370. doi: 10.1002/mp.13641. Epub 2019 Jun 26.
8
Difference in LET-based biological doses between IMPT optimization techniques: Robust and PTV-based optimizations.
J Appl Clin Med Phys. 2020 Apr;21(4):42-50. doi: 10.1002/acm2.12844. Epub 2020 Mar 9.
9
Hypoxia adapted relative biological effectiveness models for proton therapy: a simulation study.
Biomed Phys Eng Express. 2022 Nov 4;8(6). doi: 10.1088/2057-1976/ac9b5d.

本文引用的文献

1
A unified path seeking algorithm for IMRT and IMPT beam orientation optimization.
Phys Med Biol. 2023 Sep 22;68(19). doi: 10.1088/1361-6560/acf63f.
2
Combined RBE and OER optimization in proton therapy with FLUKA based on EF5-PET.
J Appl Clin Med Phys. 2023 Sep;24(9):e14014. doi: 10.1002/acm2.14014. Epub 2023 May 10.
4
ESTRO-EANO guideline on target delineation and radiotherapy details for glioblastoma.
Radiother Oncol. 2023 Jul;184:109663. doi: 10.1016/j.radonc.2023.109663. Epub 2023 Apr 13.
5
Radiobiological Aspects of FLASH Radiotherapy.
Biomolecules. 2022 Sep 26;12(10):1376. doi: 10.3390/biom12101376.
6
Hypoxia adapted relative biological effectiveness models for proton therapy: a simulation study.
Biomed Phys Eng Express. 2022 Nov 4;8(6). doi: 10.1088/2057-1976/ac9b5d.
7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验