Suppr超能文献

用于强度调制质子治疗的稳健射束方向优化。

Robust beam orientation optimization for intensity-modulated proton therapy.

机构信息

Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, CA, 90095, USA.

Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA.

出版信息

Med Phys. 2019 Aug;46(8):3356-3370. doi: 10.1002/mp.13641. Epub 2019 Jun 26.

Abstract

PURPOSE

Dose conformality and robustness are equally important in intensity modulated proton therapy (IMPT). Despite the obvious implication of beam orientation on both dosimetry and robustness, an automated, robust beam orientation optimization algorithm has not been incorporated due to the problem complexity and paramount computational challenge. In this study, we developed a novel IMPT framework that integrates robust beam orientation optimization (BOO) and robust fluence map optimization (FMO) in a unified framework.

METHODS

The unified framework is formulated to include a dose fidelity term, a heterogeneity-weighted group sparsity term, and a sensitivity regularization term. The L2, 1/2-norm group sparsity is used to reduce the number of active beams from the initial 1162 evenly distributed noncoplanar candidate beams, to between two and four. A heterogeneity index, which evaluates the lateral tissue heterogeneity of a beam, is used to weigh the group sparsity term. With this index, beams more resilient to setup uncertainties are encouraged. There is a symbiotic relationship between the heterogeneity index and the sensitivity regularization; the integrated optimization framework further improves beam robustness against both range and setup uncertainties. This Sensitivity regularization and Heterogeneity weighting based BOO and FMO framework (SHBOO-FMO) was tested on two skull-base tumor (SBT) patients and two bilateral head-and-neck (H&N) patients. The conventional CTV-based optimized plans (Conv) with SHBOO-FMO beams (SHBOO-Conv) and manual beams (MAN-Conv) were compared to investigate the beam robustness of the proposed method. The dosimetry and robustness of SHBOO-FMO plan were compared against the manual beam plan with CTV-based voxel-wise worst-case scenario approach (MAN-WC).

RESULTS

With SHBOO-FMO method, the beams with superior range robustness over manual beams were selected while the setup robustness was maintained or improved. On average, the lowest [D95%, V95%, V100%] of CTV were increased from [93.85%, 91.06%, 70.64%] in MAN-Conv plans, to [98.62%, 98.61%, 96.17%] in SHBOO-Conv plans with range uncertainties. With setup uncertainties, the average lowest [D98%, D95%, V95%, V100%] of CTV were increased from [92.06%, 94.83%, 94.31%, 78.93%] in MAN-Conv plans, to [93.54%, 96.61%, 97.01%, 91.98%] in SHBOO-Conv plans. Compared with the MAN-WC plans, the final SHBOO-FMO plans achieved comparable plan robustness and better OAR sparing, with an average reduction of [Dmean, Dmax] of [6.31, 6.55] GyRBE for the SBT cases and [1.89, 5.08] GyRBE for the H&N cases from the MAN-WC plans.

CONCLUSION

We developed a novel method to integrate robust BOO and robust FMO into IMPT optimization for a unified solution of both BOO and FMO, generating plans with superior dosimetry and good robustness.

摘要

目的

在强度调制质子治疗(IMPT)中,剂量适形性和稳健性同样重要。尽管射束方向对剂量计算和稳健性都有明显的影响,但由于问题的复杂性和极高的计算挑战,尚未纳入自动、稳健的射束方向优化算法。在这项研究中,我们开发了一种新的 IMPT 框架,该框架将稳健的射束方向优化(BOO)和稳健的通量图优化(FMO)集成在一个统一的框架中。

方法

该统一框架的构建包括剂量保真度项、异质性加权组稀疏项和敏感性正则化项。使用 L2,1/2-范数组稀疏化来减少从最初的 1162 个均匀分布的非共面候选射束中选择的活跃射束的数量,范围为 2 到 4 个。使用评估射束横向组织异质性的异质性指数来加权组稀疏化项。通过该指数,鼓励选择对设置不确定性更具弹性的射束。异质性指数与敏感性正则化之间存在共生关系;集成优化框架进一步提高了射束对射程和设置不确定性的稳健性。这种基于敏感性正则化和异质性加权的 BOO 和 FMO 框架(SHBOO-FMO)在两个颅底肿瘤(SBT)患者和两个双侧头颈部(H&N)患者中进行了测试。比较了基于常规 CTV 的优化计划(Conv)与 SHBOO-FMO 射束(SHBOO-Conv)和手动射束(MAN-Conv)的计划,以研究所提出方法的射束稳健性。通过基于 CTV 的体素级最坏情况场景方法(MAN-WC),将 SHBOO-FMO 计划的剂量学和稳健性与手动射束计划进行了比较。

结果

使用 SHBOO-FMO 方法,选择了具有更好射程稳健性的射束,同时保持或提高了设置稳健性。平均而言,CTV 的最低[D95%、V95%、V100%]值从 MAN-Conv 计划中的[93.85%、91.06%、70.64%]增加到 SHBOO-Conv 计划中的[98.62%、98.61%、96.17%],具有射程不确定性。对于设置不确定性,CTV 的平均最低[D98%、D95%、V95%、V100%]值从 MAN-Conv 计划中的[92.06%、94.83%、94.31%、78.93%]增加到 SHBOO-Conv 计划中的[93.54%、96.61%、97.01%、91.98%]。与 MAN-WC 计划相比,最终的 SHBOO-FMO 计划实现了可比较的计划稳健性和更好的 OAR 保护,SBT 病例的[Dmean、Dmax]平均减少了[6.31、6.55]GyRBE,H&N 病例的[Dmean、Dmax]平均减少了[1.89、5.08]GyRBE。

结论

我们开发了一种新方法,将稳健的 BOO 和稳健的 FMO 集成到 IMPT 优化中,为 BOO 和 FMO 的统一解决方案提供了一种方法,生成了具有更好剂量学和良好稳健性的计划。

相似文献

1
Robust beam orientation optimization for intensity-modulated proton therapy.
Med Phys. 2019 Aug;46(8):3356-3370. doi: 10.1002/mp.13641. Epub 2019 Jun 26.
2
Robust optimization for intensity-modulated proton therapy with soft spot sensitivity regularization.
Med Phys. 2019 Mar;46(3):1408-1425. doi: 10.1002/mp.13344. Epub 2019 Jan 21.
4
Reformulated McNamara RBE-weighted beam orientation optimization for intensity modulated proton therapy.
Med Phys. 2022 Apr;49(4):2136-2149. doi: 10.1002/mp.15552. Epub 2022 Mar 4.
5
Fraction-variant beam orientation optimization for intensity-modulated proton therapy.
Med Phys. 2020 Sep;47(9):3826-3834. doi: 10.1002/mp.14340. Epub 2020 Aug 2.
6
Linear energy transfer weighted beam orientation optimization for intensity-modulated proton therapy.
Med Phys. 2021 Jan;48(1):57-70. doi: 10.1002/mp.14329. Epub 2020 Jul 13.
7
A unified path seeking algorithm for IMRT and IMPT beam orientation optimization.
Phys Med Biol. 2023 Sep 22;68(19). doi: 10.1088/1361-6560/acf63f.
9
A novel energy layer optimization framework for spot-scanning proton arc therapy.
Med Phys. 2020 Jun;47(5):2072-2084. doi: 10.1002/mp.14083. Epub 2020 Mar 13.

引用本文的文献

1
A quantum computing approach to beam angle optimization.
ArXiv. 2025 Apr 10:arXiv:2504.07844v1.
2
Hypoxia-informed RBE-weighted beam orientation optimization for intensity modulated proton therapy.
Med Phys. 2024 Mar;51(3):2320-2333. doi: 10.1002/mp.16978. Epub 2024 Feb 12.
4
A unified path seeking algorithm for IMRT and IMPT beam orientation optimization.
Phys Med Biol. 2023 Sep 22;68(19). doi: 10.1088/1361-6560/acf63f.
5
Analytical HDR prostate brachytherapy planning with automatic catheter and isotope selection.
Med Phys. 2023 Oct;50(10):6525-6534. doi: 10.1002/mp.16677. Epub 2023 Aug 31.
6
Beam angle optimization for proton therapy via group-sparsity based angle generation method.
Med Phys. 2023 Jun;50(6):3258-3273. doi: 10.1002/mp.16392. Epub 2023 Apr 3.
8
9
A Review of Proton Therapy - Current Status and Future Directions.
Precis Radiat Oncol. 2022 Jun;6(2):164-176. doi: 10.1002/pro6.1149. Epub 2022 Apr 27.
10
Fixed Beamline Optimization for Intensity Modulated Carbon-Ion Therapy.
IEEE Trans Radiat Plasma Med Sci. 2022 Mar;6(3):288-293. doi: 10.1109/trpms.2021.3092296. Epub 2021 Jun 25.

本文引用的文献

1
Robust Optimization for Intensity Modulated Proton Therapy Plans with Multi-Isocenter Large Fields.
Int J Part Ther. 2016 Fall;3(2):305-311. doi: 10.14338/IJPT-16-00012.1. Epub 2016 Dec 30.
2
Robust optimization for intensity-modulated proton therapy with soft spot sensitivity regularization.
Med Phys. 2019 Mar;46(3):1408-1425. doi: 10.1002/mp.13344. Epub 2019 Jan 21.
3
Robust radiotherapy planning.
Phys Med Biol. 2018 Nov 12;63(22):22TR02. doi: 10.1088/1361-6560/aae659.
5
Development of the open-source dose calculation and optimization toolkit matRad.
Med Phys. 2017 Jun;44(6):2556-2568. doi: 10.1002/mp.12251. Epub 2017 May 12.
6
Beam angle selection incorporation of anatomical heterogeneities for pencil beam scanning charged-particle therapy.
Phys Med Biol. 2016 Dec 21;61(24):8664-8675. doi: 10.1088/1361-6560/61/24/8664. Epub 2016 Nov 23.
8
Robustness Recipes for Minimax Robust Optimization in Intensity Modulated Proton Therapy for Oropharyngeal Cancer Patients.
Int J Radiat Oncol Biol Phys. 2016 May 1;95(1):163-170. doi: 10.1016/j.ijrobp.2016.02.035. Epub 2016 Feb 16.
9
Robust Intensity Modulated Proton Therapy (IMPT) Increases Estimated Clinical Benefit in Head and Neck Cancer Patients.
PLoS One. 2016 Mar 31;11(3):e0152477. doi: 10.1371/journal.pone.0152477. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验