Suppr超能文献

真实世界数据中药物相关不良事件的预测建模:以利奈唑胺血液学结局为例。

Predictive Modeling of Drug-Related Adverse Events with Real-World Data: A Case Study of Linezolid Hematologic Outcomes.

机构信息

Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA.

Division of Infectious Diseases, Department of Medicine, University of California San Francisco, San Francisco, California, USA.

出版信息

Clin Pharmacol Ther. 2024 Apr;115(4):847-859. doi: 10.1002/cpt.3201. Epub 2024 Feb 12.

Abstract

Electronic health records (EHRs) provide meaningful knowledge of drug-related adverse events (AEs) that are not captured in standard drug development and postmarketing surveillance. Using variables obtained from EHR data in the University of California San Francisco de-identified Clinical Data Warehouse, we aimed to evaluate the potential of machine learning to predict two hematological AEs, thrombocytopenia and anemia, in a cohort of patients treated with linezolid for 3 or more days. Features for model input were extracted at linezolid initiation (index), and outcomes were characterized from index to 14 days post-treatment. Random forest classification (RFC) was used for AE prediction, and reduced feature models were evaluated using cumulative importance (cImp) for feature selection. Grade 3+ thrombocytopenia and anemia occurred in 31% of 2,171 and 56% of 2,170 evaluable patients, respectively. Of the total 53 features, as few as 7 contributed at least 50% cImp, resulting in prediction accuracies of 70% or higher and area under the receiver operating characteristic curves of 0.886 for grade 3+ thrombocytopenia and 0.759 for grade 3+ anemia. Sensitivity analyses in strictly defined patient subgroups revealed similarly high predictive performance in full and reduced feature models. A logistic regression model with the same 50% cImp features showed similar predictive performance as RFC and good concordance with RFC probability predictions after isotonic calibration, adding interpretability. Collectively, this work demonstrates potential for machine learning prediction of AE risk in real-world patients using few variables regularly available in EHRs, which may aid in clinical decision making and/or monitoring.

摘要

电子健康记录 (EHR) 提供了有意义的药物相关不良事件 (AE) 知识,这些知识在标准药物开发和上市后监测中无法获得。我们利用加利福尼亚大学旧金山分校去识别临床数据仓库中从 EHR 数据中获取的变量,旨在评估机器学习在预测接受利奈唑胺治疗 3 天或以上的患者中两种血液学 AE(血小板减少症和贫血)的潜力。模型输入的特征在利奈唑胺开始时(索引)提取,结果从索引到治疗后 14 天进行描述。随机森林分类(RFC)用于 AE 预测,使用累积重要性(cImp)对特征选择进行简化特征模型评估。3+级血小板减少症和贫血分别在 2171 名可评估患者中的 31%和 2170 名可评估患者中的 56%中发生。在总共 53 个特征中,只有 7 个特征至少贡献了 50%的 cImp,从而导致预测准确率达到 70%或更高,3+级血小板减少症的受试者工作特征曲线下面积为 0.886,3+级贫血为 0.759。在严格定义的患者亚组的敏感性分析中,全特征和简化特征模型均显示出类似的高预测性能。具有相同 50% cImp 特征的逻辑回归模型显示出与 RFC 相似的预测性能,并且在等渗校准后与 RFC 概率预测具有良好的一致性,增加了可解释性。总的来说,这项工作证明了使用 EHR 中通常可用的少量变量在真实世界患者中进行 AE 风险机器学习预测的潜力,这可能有助于临床决策和/或监测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验