文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于电路的干预纠正了脆性 X 小鼠模型中过度的齿状回输出。

Circuit-based intervention corrects excessive dentate gyrus output in the fragile X mouse model.

机构信息

Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, United States.

Department of Neuroscience, Washington University School of Medicine, St Louis, United States.

出版信息

Elife. 2024 Feb 12;12:RP92563. doi: 10.7554/eLife.92563.


DOI:10.7554/eLife.92563
PMID:38345852
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10942577/
Abstract

Abnormal cellular and circuit excitability is believed to drive many core phenotypes in fragile X syndrome (FXS). The dentate gyrus is a brain area performing critical computations essential for learning and memory. However, little is known about dentate circuit defects and their mechanisms in FXS. Understanding dentate circuit dysfunction in FXS has been complicated by the presence of two types of excitatory neurons, the granule cells and mossy cells. Here we report that loss of FMRP markedly decreased excitability of dentate mossy cells, a change opposite to all other known excitability defects in excitatory neurons in FXS. This mossy cell hypo-excitability is caused by increased Kv7 function in knockout (KO) mice. By reducing the excitatory drive onto local hilar interneurons, hypo-excitability of mossy cells results in increased excitation/inhibition ratio in granule cells and thus paradoxically leads to excessive dentate output. Circuit-wide inhibition of Kv7 channels in KO mice increases inhibitory drive onto granule cells and normalizes the dentate output in response to physiologically relevant theta-gamma coupling stimulation. Our study suggests that circuit-based interventions may provide a promising strategy in this disorder to bypass irreconcilable excitability defects in different cell types and restore their pathophysiological consequences at the circuit level.

摘要

异常的细胞和电路兴奋性被认为是驱动脆性 X 综合征 (FXS) 的许多核心表型的原因。齿状回是大脑区域,执行学习和记忆所必需的关键计算。然而,关于 FXS 中的齿状回电路缺陷及其机制知之甚少。由于存在两种兴奋性神经元,即颗粒细胞和苔藓细胞,理解 FXS 中的齿状回电路功能障碍变得复杂。在这里,我们报告说,FMRP 的缺失显着降低了齿状回苔藓细胞的兴奋性,这种变化与 FXS 中所有其他已知的兴奋性神经元兴奋性缺陷相反。这种苔藓细胞兴奋性降低是由于 knockout (KO) 小鼠中 Kv7 功能增加所致。通过减少对局部门区中间神经元的兴奋性驱动,苔藓细胞的兴奋性降低导致颗粒细胞中兴奋/抑制比增加,从而反常地导致过度的齿状回输出。在 KO 小鼠中广泛抑制 Kv7 通道会增加对颗粒细胞的抑制性驱动,并使齿状回输出正常化,以响应生理相关的θ-γ耦合刺激。我们的研究表明,基于电路的干预措施可能为该疾病提供一种有前途的策略,以绕过不同细胞类型中不可调和的兴奋性缺陷,并在电路水平上恢复其病理生理学后果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda7/10942577/57747adb98f1/elife-92563-fig8-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda7/10942577/a400a5743863/elife-92563-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda7/10942577/a55bcc43f892/elife-92563-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda7/10942577/46460bdaa895/elife-92563-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda7/10942577/c4805fdf74db/elife-92563-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda7/10942577/e07792bac803/elife-92563-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda7/10942577/47398d193ea0/elife-92563-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda7/10942577/d86aed0cfff2/elife-92563-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda7/10942577/cfa6734edc87/elife-92563-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda7/10942577/fa170522d4de/elife-92563-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda7/10942577/6b86c80aa05b/elife-92563-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda7/10942577/b20b62228c6e/elife-92563-fig7-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda7/10942577/0725bf9a0acd/elife-92563-fig7-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda7/10942577/0db7ec6efaba/elife-92563-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda7/10942577/9f8c246d8ed3/elife-92563-fig8-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda7/10942577/4dae8a41cca8/elife-92563-fig8-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda7/10942577/57747adb98f1/elife-92563-fig8-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda7/10942577/a400a5743863/elife-92563-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda7/10942577/a55bcc43f892/elife-92563-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda7/10942577/46460bdaa895/elife-92563-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda7/10942577/c4805fdf74db/elife-92563-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda7/10942577/e07792bac803/elife-92563-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda7/10942577/47398d193ea0/elife-92563-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda7/10942577/d86aed0cfff2/elife-92563-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda7/10942577/cfa6734edc87/elife-92563-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda7/10942577/fa170522d4de/elife-92563-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda7/10942577/6b86c80aa05b/elife-92563-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda7/10942577/b20b62228c6e/elife-92563-fig7-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda7/10942577/0725bf9a0acd/elife-92563-fig7-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda7/10942577/0db7ec6efaba/elife-92563-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda7/10942577/9f8c246d8ed3/elife-92563-fig8-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda7/10942577/4dae8a41cca8/elife-92563-fig8-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dda7/10942577/57747adb98f1/elife-92563-fig8-figsupp3.jpg

相似文献

[1]
Circuit-based intervention corrects excessive dentate gyrus output in the fragile X mouse model.

Elife. 2024-2-12

[2]
Circuit-based intervention corrects excessive dentate gyrus output in the Fragile X mouse model.

bioRxiv. 2023-11-13

[3]
Voltage-Independent SK-Channel Dysfunction Causes Neuronal Hyperexcitability in the Hippocampus of Knock-Out Mice.

J Neurosci. 2018-11-2

[4]
Development of GABAergic Inputs Is Not Altered in Early Maturation of Adult Born Dentate Granule Neurons in Fragile X Mice.

eNeuro. 2018-12-3

[5]
Selective Deletion of Astroglial FMRP Dysregulates Glutamate Transporter GLT1 and Contributes to Fragile X Syndrome Phenotypes In Vivo.

J Neurosci. 2016-7-6

[6]
Decreased surface expression of the δ subunit of the GABA receptor contributes to reduced tonic inhibition in dentate granule cells in a mouse model of fragile X syndrome.

Exp Neurol. 2017-11

[7]
ICAM5 as a Novel Target for Treating Cognitive Impairment in Fragile X Syndrome.

J Neurosci. 2019-12-27

[8]
Identification of a molecular locus for normalizing dysregulated GABA release from interneurons in the Fragile X brain.

Mol Psychiatry. 2020-9

[9]
Fragile X mice: reduced long-term potentiation and N-Methyl-D-Aspartate receptor-mediated neurotransmission in dentate gyrus.

J Neurosci Res. 2010-12-8

[10]
Adult neurogenesis modifies excitability of the dentate gyrus.

Front Neural Circuits. 2013-12-26

引用本文的文献

[1]
Hypnotic treatment improves sleep architecture and EEG disruptions and rescues memory deficits in a mouse model of fragile X syndrome.

Cell Rep. 2024-6-25

本文引用的文献

[1]
Theta and gamma oscillations in the rat hippocampus support the discrimination of object displacement in a recognition memory task.

Front Behav Neurosci. 2022-12-21

[2]
Presynaptic FMRP and local protein synthesis support structural and functional plasticity of glutamatergic axon terminals.

Neuron. 2022-8-17

[3]
FMRP regulates GABA receptor channel activity to control signal integration in hippocampal granule cells.

Cell Rep. 2022-5-17

[4]
heterozygosity restores neuronal morphology in fragile X syndrome mice.

Proc Natl Acad Sci U S A. 2022-4-12

[5]
Adaptive Mossy Cell Circuit Plasticity after Status Epilepticus.

J Neurosci. 2022-4-6

[6]
Hyperexcitability of Sensory Neurons in Fragile X Mouse Model.

Front Mol Neurosci. 2021-12-22

[7]
Endocannabinoids Tune Intrinsic Excitability in O-LM Interneurons by Direct Modulation of Postsynaptic Kv7 Channels.

J Neurosci. 2021-11-17

[8]
Elevation of hilar mossy cell activity suppresses hippocampal excitability and avoidance behavior.

Cell Rep. 2021-9-14

[9]
The role of hippocampal mossy cells in novelty detection.

Neurobiol Learn Mem. 2021-9

[10]
Kv7 Channels and Excitability Disorders.

Handb Exp Pharmacol. 2021

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索