Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon 97239.
Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239.
J Neurosci. 2022 Apr 6;42(14):3025-3036. doi: 10.1523/JNEUROSCI.1008-21.2022. Epub 2022 Feb 18.
Hilar mossy cells regulate network function in the hippocampus through both direct excitation and di-synaptic inhibition of dentate granule cells (DGCs). Substantial mossy cell loss accompanies hippocampal circuit changes in epilepsy. We examined the contribution of surviving mossy cells to network activity in the reorganized dentate gyrus after pilocarpine-induced status epilepticus (SE). To examine functional circuit changes, we optogenetically stimulated mossy cells in acute hippocampal slices from male mice. In control mice, activation of mossy cells produced monosynaptic excitatory and di-synaptic GABAergic currents in DGCs. In pilocarpine-treated mice, mossy cell density and excitation of DGCs were reduced in parallel, with only a minimal reduction in feedforward inhibition, enhancing the inhibition/excitation ratio. Surprisingly, mossy cell-driven excitation of parvalbumin-positive (PV+) basket cells, primary mediators of feed-forward inhibition, was maintained. Our results suggest that mossy cell outputs reorganize following seizures, increasing their net inhibitory effect in the hippocampus. Hilar mossy cell loss in epilepsy is associated with hippocampal hyperexcitability, potentially as a result of disrupted dentate microcircuit function. We used transgenic mice, translational mouse modeling, viral vectors, and optogenetics to selectively examine functional changes to mossy cell outputs following status epilepticus (SE). Interestingly, the outputs of surviving mossy cells exhibited adaptive plasticity onto target parvalbumin-positive (PV+) interneurons, resulting in a relative increase in their inhibitory control of dentate granule cells (DGCs). Our findings suggest that residual mossy cell outputs can reorganize in a homeostatic manner, which may provide clues for therapeutic targeting of this microcircuit.
海拉尔苔藓细胞通过直接兴奋和双突触抑制齿状回颗粒细胞(DGC)调节海马网络功能。癫痫中海马回路变化伴随着苔藓细胞大量丢失。我们研究了在匹罗卡品诱导的癫痫持续状态(SE)后,重组齿状回中存活的苔藓细胞对网络活动的贡献。为了研究功能回路变化,我们在雄性小鼠急性海马切片中光遗传刺激苔藓细胞。在对照小鼠中,苔藓细胞的激活在 DGC 中产生单突触兴奋性和双突触 GABA 能电流。在匹罗卡品处理的小鼠中,苔藓细胞密度和 DGC 的兴奋与平行减少,仅有最小的前馈抑制减少,增强了抑制/兴奋比。令人惊讶的是,苔藓细胞驱动的 PV+篮细胞(前馈抑制的主要介导物)的兴奋被维持。我们的结果表明,癫痫发作后苔藓细胞的输出重新组织,增加了海马中的净抑制作用。癫痫中海拉尔苔藓细胞丢失与海马过度兴奋有关,可能是由于齿状微电路功能障碍所致。我们使用转基因小鼠、转化的小鼠模型、病毒载体和光遗传学选择性地研究了 SE 后苔藓细胞输出的功能变化。有趣的是,存活的苔藓细胞的输出表现出对靶 PV+中间神经元的适应性可塑性,导致其对齿状颗粒细胞(DGC)的抑制控制相对增加。我们的发现表明,残留的苔藓细胞输出可以以一种稳态的方式重新组织,这可能为该微电路的治疗靶向提供线索。