Liu Xuenan, Yang Xuezhi, Li Xiaobai
IEEE J Biomed Health Inform. 2024 May;28(5):2955-2966. doi: 10.1109/JBHI.2024.3363006. Epub 2024 May 6.
Video-based Photoplethysmography (VPPG) offers the capability to measure heart rate (HR) from facial videos. However, the reliability of the HR values extracted through this method remains uncertain, especially when videos are affected by various disturbances. Confronted by this challenge, we introduce an innovative framework for VPPG-based HR measurements, with a focus on capturing diverse sources of uncertainty in the predicted HR values. In this context, a neural network named HRUNet is structured for HR extraction from input facial videos. Departing from the conventional training approach of learning specific weight (and bias) values, we leverage the Bayesian posterior estimation to derive weight distributions within HRUNet. These distributions allow for sampling to encode uncertainty stemming from HRUNet's limited performance. On this basis, we redefine HRUNet's output as a distribution of potential HR values, as opposed to the traditional emphasis on the single most probable HR value. The underlying goal is to discover the uncertainty arising from inherent noise in the input video. HRUNet is evaluated across 1,098 videos from seven datasets, spanning three scenarios: undisturbed, motion-disturbed, and light-disturbed. The ensuing test outcomes demonstrate that uncertainty in the HR measurements increases significantly in the scenarios marked by disturbances, compared to that in the undisturbed scenario. Moreover, HRUNet outperforms state-of-the-art methods in HR accuracy when excluding HR values with 0.4 uncertainty. This underscores that uncertainty emerges as an informative indicator of potentially erroneous HR measurements. With enhanced reliability affirmed, the VPPG technique holds the promise for applications in safety-critical domains.
基于视频的光电容积脉搏波描记法(VPPG)能够从面部视频中测量心率(HR)。然而,通过这种方法提取的心率值的可靠性仍然不确定,尤其是当视频受到各种干扰时。面对这一挑战,我们引入了一个创新的基于VPPG的心率测量框架,重点是捕捉预测心率值中各种不确定性来源。在此背景下,构建了一个名为HRUNet的神经网络,用于从输入的面部视频中提取心率。与学习特定权重(和偏差)值的传统训练方法不同,我们利用贝叶斯后验估计来推导HRUNet内的权重分布。这些分布允许采样以编码由于HRUNet性能有限而产生的不确定性。在此基础上,我们将HRUNet的输出重新定义为潜在心率值的分布,而不是传统上强调的单个最可能的心率值。其根本目标是发现输入视频中固有噪声产生的不确定性。HRUNet在来自七个数据集的1098个视频上进行了评估,涵盖三种场景:无干扰、运动干扰和光照干扰。随后的测试结果表明,与无干扰场景相比,在有干扰的场景中,心率测量的不确定性显著增加。此外,当排除不确定性为0.4的心率值时,HRUNet在心率准确性方面优于现有方法。这强调了不确定性成为潜在错误心率测量的一个信息性指标。随着可靠性的提高,VPPG技术有望应用于安全关键领域。