Suppr超能文献

MFF-Net:一种用于从面部视频测量心律的轻量级多频网络。

MFF-Net: A Lightweight Multi-Frequency Network for Measuring Heart Rhythm from Facial Videos.

作者信息

Yan Wenqin, Zhuang Jialiang, Chen Yuheng, Zhang Yun, Zheng Xiujuan

机构信息

College of Electrical Engineering, Sichuan University, Chengdu 610065, China.

Key Laboratory of Information and Automation Technology of Sichuan Province, Chengdu 610065, China.

出版信息

Sensors (Basel). 2024 Dec 12;24(24):7937. doi: 10.3390/s24247937.

Abstract

Remote photo-plethysmography (rPPG) is a useful camera-based health motioning method that can measure the heart rhythm from facial videos. Many well-established deep learning models can provide highly accurate and robust results in measuring heart rate (HR) and heart rate variability (HRV). However, these methods are unable to effectively eliminate illumination variation and motion artifact disturbances, and their substantial computational resource requirements significantly limit their applicability in real-world scenarios. Hence, we propose a lightweight multi-frequency network named MFF-Net to measure heart rhythm via facial videos in a short time. Firstly, we propose a multi-frequency mode signal fusion (MFF) mechanism, which can separate the characteristics of different modes of the original rPPG signals and send them to a processor with independent parameters, helping the network recover blood volume pulse (BVP) signals accurately under a complex noise environment. In addition, in order to help the network extract the characteristics of different modal signals effectively, we designed a temporal multiscale convolution module (TMSC-module) and spectrum self-attention module (SSA-module). The TMSC-module can expand the receptive field of the signal-refining network, obtain more abundant multiscale information, and transmit it to the signal reconstruction network. The SSA-module can help a signal reconstruction network locate the obvious inferior parts in the reconstruction process so as to make better decisions when merging multi-dimensional signals. Finally, in order to solve the over-fitting phenomenon that easily occurs in the network, we propose an over-fitting sampling training scheme to further improve the fitting ability of the network. Comprehensive experiments were conducted on three benchmark datasets, and we estimated HR and HRV based on the BVP signals derived by MFF-Net. Compared with state-of-the-art methods, our approach achieves better performance both on HR and HRV estimation with lower computational burden. We can conclude that the proposed MFF-Net has the opportunity to be applied in many real-world scenarios.

摘要

远程光电容积脉搏波描记法(rPPG)是一种基于摄像头的实用健康监测方法,可从面部视频中测量心律。许多成熟的深度学习模型在测量心率(HR)和心率变异性(HRV)方面能够提供高度准确且稳健的结果。然而,这些方法无法有效消除光照变化和运动伪影干扰,并且其大量的计算资源需求显著限制了它们在实际场景中的适用性。因此,我们提出了一种名为MFF-Net的轻量级多频网络,用于在短时间内通过面部视频测量心律。首先,我们提出了一种多频模式信号融合(MFF)机制,该机制可以分离原始rPPG信号不同模式的特征,并将它们发送到具有独立参数的处理器,帮助网络在复杂噪声环境下准确恢复血容量脉搏(BVP)信号。此外,为了帮助网络有效提取不同模态信号的特征,我们设计了一个时间多尺度卷积模块(TMSC模块)和频谱自注意力模块(SSA模块)。TMSC模块可以扩展信号细化网络的感受野,获得更丰富的多尺度信息,并将其传输到信号重建网络。SSA模块可以帮助信号重建网络在重建过程中定位明显的劣势部分,以便在合并多维信号时做出更好的决策。最后,为了解决网络中容易出现的过拟合现象,我们提出了一种过拟合采样训练方案,以进一步提高网络的拟合能力。在三个基准数据集上进行了综合实验,我们基于MFF-Net导出的BVP信号估计了HR和HRV。与现有方法相比,我们的方法在HR和HRV估计方面均实现了更好的性能,且计算负担更低。我们可以得出结论,所提出的MFF-Net有机会应用于许多实际场景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4430/11679567/a460fa6f00a3/sensors-24-07937-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验