Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA.
Nat Struct Mol Biol. 2024 Mar;31(3):568-577. doi: 10.1038/s41594-024-01225-6. Epub 2024 Feb 12.
Cellular metabolism relies on the regulation and maintenance of mitochondrial DNA (mtDNA). Hundreds to thousands of copies of mtDNA exist in each cell, yet because mitochondria lack histones or other machinery important for nuclear genome compaction, it remains unresolved how mtDNA is packaged into individual nucleoids. In this study, we used long-read single-molecule accessibility mapping to measure the compaction of individual full-length mtDNA molecules at near single-nucleotide resolution. We found that, unlike the nuclear genome, human mtDNA largely undergoes all-or-none global compaction, with most nucleoids existing in an inaccessible, inactive state. Highly accessible mitochondrial nucleoids are co-occupied by transcription and replication components and selectively form a triple-stranded displacement loop structure. In addition, we showed that the primary nucleoid-associated protein TFAM directly modulates the fraction of inaccessible nucleoids both in vivo and in vitro, acting consistently with a nucleation-and-spreading mechanism to coat and compact mitochondrial nucleoids. Together, these findings reveal the primary architecture of mtDNA packaging and regulation in human cells.
细胞代谢依赖于线粒体 DNA(mtDNA)的调节和维持。每个细胞中存在数百到数千个 mtDNA 拷贝,但由于线粒体缺乏组蛋白或其他对于核基因组紧缩很重要的机制,因此仍未解决 mtDNA 如何包装成单个核小体的问题。在这项研究中,我们使用长读长单分子可及性图谱来测量单个全长 mtDNA 分子在接近单核苷酸分辨率下的紧缩程度。我们发现,与核基因组不同,人类 mtDNA 主要经历全有或全无的全局紧缩,大多数核小体处于不可接近、不活跃的状态。高度可及的线粒体核小体与转录和复制成分共同占据,并选择性地形成三链置换环结构。此外,我们还表明,主要的核小体相关蛋白 TFAM 直接调节体内和体外不可接近核小体的分数,其作用与成核和扩展机制一致,以覆盖和紧缩线粒体核小体。总之,这些发现揭示了人类细胞中线粒体 DNA 包装和调节的主要结构。