Suppr超能文献

基于 MRI 的乳腺癌新辅助治疗早期肿瘤退缩模式:与分子亚型及治疗后病理反应的相关性。

MRI-based tumor shrinkage patterns after early neoadjuvant therapy in breast cancer: correlation with molecular subtypes and pathological response after therapy.

机构信息

Department of Radiology, The First Hospital of China Medical University, Nanjing North Street 155, Shenyang, 110001, Liaoning Province, China.

出版信息

Breast Cancer Res. 2024 Feb 12;26(1):26. doi: 10.1186/s13058-024-01781-1.

Abstract

BACKGROUND

MRI-based tumor shrinkage patterns (TSP) after neoadjuvant therapy (NAT) have been associated with pathological response. However, the understanding of TSP after early NAT remains limited. We aimed to analyze the relationship between TSP after early NAT and pathological response after therapy in different molecular subtypes.

METHODS

We prospectively enrolled participants with invasive ductal breast cancers who received NAT and performed pretreatment DCE-MRI from September 2020 to August 2022. Early-stage MRIs were performed after the first (1st-MRI) and/or second (2nd-MRI) cycle of NAT. Tumor shrinkage patterns were categorized into four groups: concentric shrinkage, diffuse decrease (DD), decrease of intensity only (DIO), and stable disease (SD). Logistic regression analysis was performed to identify independent variables associated with pathologic complete response (pCR), and stratified analysis according to tumor hormone receptor (HR)/human epidermal growth factor receptor 2 (HER2) disease subtype.

RESULTS

344 participants (mean age: 50 years, 113/345 [33%] pCR) with 345 tumors (1 bilateral) had evaluable 1st-MRI or 2nd-MRI to comprise the primary analysis cohort, of which 244 participants with 245 tumors had evaluable 1st-MRI (82/245 [33%] pCR) and 206 participants with 207 tumors had evaluable 2nd-MRI (69/207 [33%] pCR) to comprise the 1st- and 2nd-timepoint subgroup analysis cohorts, respectively. In the primary analysis, multivariate analysis showed that early DD pattern (OR = 12.08; 95% CI 3.34-43.75; p < 0.001) predicted pCR independently of the change in tumor size (OR = 1.37; 95% CI 0.94-2.01; p = 0.106) in HR/HER2 subtype, and the change in tumor size was a strong pCR predictor in HER2 (OR = 1.61; 95% CI 1.22-2.13; p = 0.001) and triple-negative breast cancer (TNBC, OR = 1.61; 95% CI 1.22-2.11; p = 0.001). Compared with the change in tumor size, the SD pattern achieved a higher negative predictive value in HER2 and TNBC. The statistical significance of complete 1st-timepoint subgroup analysis was consistent with the primary analysis.

CONCLUSION

The diffuse decrease pattern in HR/HER2 subtype and stable disease in HER2 and TNBC after early NAT could serve as additional straightforward and comprehensible indicators of treatment response.

TRIAL REGISTRATION

Trial registration at https://www.chictr.org.cn/ .

REGISTRATION NUMBER

ChiCTR2000038578, registered September 24, 2020.

摘要

背景

新辅助治疗(NAT)后基于 MRI 的肿瘤退缩模式(TSP)与病理反应相关。然而,对于早期 NAT 后 TSP 的理解仍然有限。我们旨在分析不同分子亚型中早期 NAT 后 TSP 与治疗后病理反应之间的关系。

方法

我们前瞻性招募了接受 NAT 并于 2020 年 9 月至 2022 年 8 月期间进行预处理 DCE-MRI 的浸润性导管乳腺癌患者。在 NAT 的第一(1st-MRI)和/或第二(2nd-MRI)周期后进行早期 MRI。将肿瘤退缩模式分为四组:同心性退缩、弥漫性减少(DD)、仅强度减少(DIO)和疾病稳定(SD)。使用逻辑回归分析确定与病理完全缓解(pCR)相关的独立变量,并根据肿瘤激素受体(HR)/人表皮生长因子受体 2(HER2)疾病亚型进行分层分析。

结果

344 名(平均年龄:50 岁,113/345 [33%] pCR)患者的 345 个肿瘤(1 个双侧)具有可评估的 1st-MRI 或 2nd-MRI,构成主要分析队列,其中 244 名患者的 245 个肿瘤具有可评估的 1st-MRI(82/245 [33%] pCR),206 名患者的 207 个肿瘤具有可评估的 2nd-MRI(69/207 [33%] pCR),分别构成 1st-和 2nd-时间点亚组分析队列。在主要分析中,多变量分析显示,早期 DD 模式(OR=12.08;95%CI 3.34-43.75;p<0.001)独立于肿瘤大小变化(OR=1.37;95%CI 0.94-2.01;p=0.106)预测 pCR,在 HR/HER2 亚型中,肿瘤大小的变化是 pCR 的强烈预测因子(OR=1.61;95%CI 1.22-2.13;p=0.001),在 HER2 和三阴性乳腺癌(TNBC,OR=1.61;95%CI 1.22-2.11;p=0.001)中也是如此。与肿瘤大小变化相比,SD 模式在 HER2 和 TNBC 中具有更高的阴性预测值。完全的 1st-时间点亚组分析的统计学意义与主要分析一致。

结论

HR/HER2 亚型中弥漫性减少模式和 HER2 和 TNBC 中疾病稳定模式可作为治疗反应的额外简单而易于理解的指标。

试验注册

https://www.chictr.org.cn/ 进行试验注册。

注册号

ChiCTR2000038578,注册于 2020 年 9 月 24 日。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee08/10863121/6e94186d7ed8/13058_2024_1781_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验