文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

影响乳腺癌新辅助化疗后病理完全缓解的因素:预测列线图的建立与验证。

Factors Affecting Pathologic Complete Response Following Neoadjuvant Chemotherapy in Breast Cancer: Development and Validation of a Predictive Nomogram.

机构信息

From the Department of Radiology (S.Y.K., N.C., S.H.L., S.M.H., E.S.K., J.M.C., W.K.M.) and Medical Research Collaborating Center (Y.C.), Seoul National University Hospital, Seoul, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Republic of Korea (S.Y.K., N.C., S.H.L., S.M.H., E.S.K., J.M.C., W.K.M.); and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (S.Y.K., N.C., S.H.L., S.M.H., E.S.K., J.M.C., W.K.M.).

出版信息

Radiology. 2021 May;299(2):290-300. doi: 10.1148/radiol.2021203871. Epub 2021 Mar 23.


DOI:10.1148/radiol.2021203871
PMID:33754824
Abstract

Background There is an increasing need to develop a more accurate prediction model for pathologic complete response (pCR) after neoadjuvant chemotherapy (NAC) in breast cancer. Purpose To develop a nomogram based on MRI and clinical-pathologic variables to predict pCR. Materials and Methods In this single-center retrospective study, consecutive women with stage II-III breast cancer who underwent NAC followed by surgery between January 2011 and December 2017 were considered for inclusion. The women were divided into a development cohort between January 2011 and September 2015 and a validation cohort between October 2015 and December 2017. Clinical-pathologic data were collected, and mammograms and MRI scans obtained before and after NAC were analyzed. Logistic regression analyses were performed to identify independent variables associated with pCR in the development cohort from which the nomogram was created. Nomogram performance was assessed with the area under the receiver operating characteristic curve (AUC) and calibration slope. Results A total of 359 women (mean age, 49 years ± 10 [standard deviation]) were in the development cohort and 351 (49 years ± 10) in the validation cohort. Hormone receptor negativity (odds ratio [OR], 3.1; 95% CI: 1.4, 7.1; = .006), high Ki-67 index (OR, 1.05; 95% CI: 1.03, 1.07; < .001), and post-NAC MRI variables, including small tumor size (OR, 0.6; 95% CI: 0.4, 0.9; = .03), low lesion-to-background parenchymal signal enhancement ratio (OR, 0.2; 95% CI: 0.1, 0.6; = .004), and absence of enhancement in the tumor bed (OR, 3.8; 95% CI: 1.4, 10.5; = .009) were independently associated with pCR. The nomogram incorporating these variables showed good discrimination (AUC, 0.90; 95% CI: 0.86, 0.94) and calibration abilities (calibration slope, 0.91; 95% CI: 0.69, 1.13) in the independent validation cohort. Conclusion A nomogram incorporating hormone receptor status, Ki-67 index, and MRI variables showed good discrimination and calibration abilities in predicting pathologic complete response. © RSNA, 2021 See also the editorial by Imbriaco and Ponsiglione in this issue.

摘要

背景:目前,人们越来越需要开发一种更准确的预测模型,以预测新辅助化疗(NAC)后乳腺癌的病理完全缓解(pCR)。目的:基于 MRI 和临床病理变量开发一个列线图,以预测 pCR。材料与方法:本单中心回顾性研究纳入了 2011 年 1 月至 2017 年 12 月期间接受 NAC 后手术治疗的 II 期-III 期乳腺癌连续女性患者。这些女性被分为 2011 年 1 月至 2015 年 9 月的发展队列和 2015 年 10 月至 2017 年 12 月的验证队列。收集临床病理数据,并分析 NAC 前后的乳腺 X 线摄影和 MRI 扫描。对发展队列中的独立变量进行 logistic 回归分析,以确定与 pCR 相关的独立变量,并据此创建列线图。通过受试者工作特征曲线(ROC)下面积(AUC)和校准斜率评估列线图的性能。结果:共有 359 名女性(平均年龄 49 岁±10[标准差])纳入发展队列,351 名女性(49 岁±10)纳入验证队列。激素受体阴性(比值比[OR],3.1;95%CI:1.4,7.1; =.006)、高 Ki-67 指数(OR,1.05;95%CI:1.03,1.07; <.001)和 NAC 后的 MRI 变量,包括肿瘤体积小(OR,0.6;95%CI:0.4,0.9; =.03)、病变与背景实质信号增强比低(OR,0.2;95%CI:0.1,0.6; =.004)和肿瘤床无强化(OR,3.8;95%CI:1.4,10.5; =.009)与 pCR 独立相关。纳入这些变量的列线图在独立验证队列中显示出良好的区分能力(AUC,0.90;95%CI:0.86,0.94)和校准能力(校准斜率,0.91;95%CI:0.69,1.13)。结论:纳入激素受体状态、Ki-67 指数和 MRI 变量的列线图在预测病理完全缓解方面具有良好的区分能力和校准能力。©RSNA,2021 参见本期 Imbriaco 和 Ponsiglione 的社论。

相似文献

[1]
Factors Affecting Pathologic Complete Response Following Neoadjuvant Chemotherapy in Breast Cancer: Development and Validation of a Predictive Nomogram.

Radiology. 2021-5

[2]
Predicting Axillary Response to Neoadjuvant Chemotherapy: Breast MRI and US in Patients with Node-Positive Breast Cancer.

Radiology. 2019-8-13

[3]
A clinicopathological-imaging nomogram for the prediction of pathological complete response in breast cancer cases administered neoadjuvant therapy.

Magn Reson Imaging. 2024-9

[4]
Evaluation of Multiparametric MRI Radiomics-Based Nomogram in Prediction of Response to Neoadjuvant Chemotherapy in Breast Cancer: A Two-Center study.

Clin Breast Cancer. 2023-8

[5]
Development and validation of a nomogram based on pretreatment dynamic contrast-enhanced MRI for the prediction of pathologic response after neoadjuvant chemotherapy for triple-negative breast cancer.

Eur Radiol. 2022-3

[6]
Prediction of pathological complete response of breast cancer patients who received neoadjuvant chemotherapy with a nomogram based on clinicopathologic variables, ultrasound, and MRI.

Br J Radiol. 2024-1-23

[7]
Microcalcifications and Peritumoral Edema Predict Survival Outcome in Luminal Breast Cancer Treated with Neoadjuvant Chemotherapy.

Radiology. 2022-8

[8]
Development and Validation of a Nomogram for Individually Predicting Pathologic Complete Remission After Preoperative Chemotherapy in Chinese Breast Cancer: A Population-Based Study.

Clin Breast Cancer. 2020-12

[9]
[Construction of a nomogram prediction model for pathological complete response (pCR) of ipsilateral supraclavicular lymph node after neoadjuvant chemotherapy for breast cancer with first diagnosis of ipsilateral supraclavicular lymph node metastasis].

Zhonghua Zhong Liu Za Zhi. 2022-2-23

[10]
MRI-based Quantification of Intratumoral Heterogeneity for Predicting Treatment Response to Neoadjuvant Chemotherapy in Breast Cancer.

Radiology. 2023-7

引用本文的文献

[1]
Added prognostic value of histogram features from preoperative multi-modal diffusion MRI in predicting Ki-67 proliferation for adult-type diffuse gliomas.

Quant Imaging Med Surg. 2025-9-1

[2]
Intra- and peritumoral radiomics nomogram based on DCE-MRI for the early prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer.

Front Oncol. 2025-6-4

[3]
Factors influencing pathological complete response to neoadjuvant chemotherapy in resectable breast cancer: A retrospective study.

Oncol Lett. 2025-5-27

[4]
The value of intratumoral and peritumoral radiomics features based on multiparametric MRI for predicting molecular staging of breast cancer.

Front Oncol. 2025-3-11

[5]
Digital mammography with AI-based computer-aided diagnosis to predict neoadjuvant chemotherapy response in HER2-positive and triple-negative breast cancer patients: comparison with MRI.

Eur Radiol. 2025-3-25

[6]
Ki-67 With MRI in Predicting the Complete Pathological Response Post-neoadjuvant Chemotherapy.

Cureus. 2024-11-11

[7]
A novel model based on protein post-translational modifications comprising the immune landscape and prediction of colorectal cancer prognosis.

J Gastrointest Oncol. 2024-8-31

[8]
Cross-modal deep learning model for predicting pathologic complete response to neoadjuvant chemotherapy in breast cancer.

NPJ Precis Oncol. 2024-9-5

[9]
Correlation and predictive value of pathological complete response and ultrasound characteristic parameters in neoadjuvant chemotherapy for breast.

World J Clin Cases. 2024-8-16

[10]
Nomogram for predicting outcomes in elderly women with mucinous breast cancer: A retrospective study combined with external validation in southwest China.

Cancer Rep (Hoboken). 2024-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索