Pawlędzio Sylwia, Ziemniak Marcin, Trzybiński Damian, Arhangelskis Mihails, Makal Anna, Woźniak Krzysztof
Neutron Scattering Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 02-093 Warszawa Poland
RSC Adv. 2024 Feb 12;14(8):5340-5350. doi: 10.1039/d3ra08081a. eCollection 2024 Feb 7.
Applications of 9-aminoacridine (9aa) and its derivatives span fields such as chemistry, biology, and medicine, including anticancer and antimicrobial activities. Protonation of such molecules can alter their bioavailability as weakly basic drugs like aminoacridines exhibit reduced solubility at high pH levels potentially limiting their effectiveness in patients with elevated gastric pH. In this study, we analyse the influence of protonation on the electronic characteristics of the molecular organic crystals of 9-aminoacridine. The application of quantum crystallography, including aspherical atom refinement, has enriched the depiction of electron density in the studied systems and non-covalent interactions, providing more details than previous studies. Our experimental results, combined with a topological analysis of the electron density and its Laplacian, provided detailed descriptions of how protonation changes the electron density distribution around the amine group and water molecule, concurrently decreasing the electron density at bond critical points of N/O-H bonds. Protonation also alters the molecular architecture of the systems under investigation. This is reflected in different proportions of the N⋯H and O⋯H intermolecular contacts for the neutral and protonated forms. Periodic DFT calculations of the cohesive energies of the crystal lattice, as well as computed interaction energies between molecules in the crystal, confirm that protonation stabilises the crystal structure due to a positive synergy between strong halogen and hydrogen bonds. Our findings highlight the potential of quantum crystallography in predicting crystal structure properties and point to its possible applications in developing new formulations for poorly soluble drugs.
9-氨基吖啶(9aa)及其衍生物的应用涵盖化学、生物学和医学等领域,包括抗癌和抗菌活性。此类分子的质子化会改变其生物利用度,因为像氨基吖啶这样的弱碱性药物在高pH值下溶解度降低,这可能会限制它们在胃pH值升高患者中的有效性。在本研究中,我们分析了质子化对9-氨基吖啶分子有机晶体电子特性的影响。量子晶体学的应用,包括非球形原子精修,丰富了对所研究体系中电子密度和非共价相互作用的描述,提供了比以往研究更多的细节。我们的实验结果,结合电子密度及其拉普拉斯算子的拓扑分析,详细描述了质子化如何改变胺基和水分子周围的电子密度分布,同时降低N/O-H键键临界点处的电子密度。质子化还改变了所研究体系的分子结构。这体现在中性和质子化形式的N⋯H和O⋯H分子间接触比例不同。晶格内聚能的周期性密度泛函理论计算以及晶体中分子间计算得到的相互作用能证实,由于强卤素键和氢键之间的正协同作用,质子化使晶体结构稳定。我们的研究结果突出了量子晶体学在预测晶体结构性质方面的潜力,并指出了其在开发难溶性药物新制剂中的可能应用。