文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度学习结合乳腺 X 线摄影和超声图像预测致密乳腺 BI-RADS US 4A 病变的恶性程度:一项诊断研究。

Deep learning combining mammography and ultrasound images to predict the malignancy of BI-RADS US 4A lesions in women with dense breasts: a diagnostic study.

机构信息

Breast Tumor Center.

Department of Medical Oncology, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou.

出版信息

Int J Surg. 2024 May 1;110(5):2604-2613. doi: 10.1097/JS9.0000000000001186.


DOI:10.1097/JS9.0000000000001186
PMID:38348891
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11093459/
Abstract

OBJECTIVES: The authors aimed to assess the performance of a deep learning (DL) model, based on a combination of ultrasound (US) and mammography (MG) images, for predicting malignancy in breast lesions categorized as Breast Imaging Reporting and Data System (BI-RADS) US 4A in diagnostic patients with dense breasts. METHODS: A total of 992 patients were randomly allocated into the training cohort and the test cohort at a proportion of 4:1. Another, 218 patients were enrolled to form a prospective validation cohort. The DL model was developed by incorporating both US and MG images. The predictive performance of the combined DL model for malignancy was evaluated by sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). The combined DL model was then compared to a clinical nomogram model and to the DL model trained using US image only and to that trained MG image only. RESULTS: The combined DL model showed satisfactory diagnostic performance for predicting malignancy in breast lesions, with an AUC of 0.940 (95% CI: 0.874-1.000) in the test cohort, and an AUC of 0.906 (95% CI: 0.817-0.995) in the validation cohort, which was significantly higher than the clinical nomogram model, and the DL model for US or MG alone ( P <0.05). CONCLUSIONS: The study developed an objective DL model combining both US and MG imaging features, which was proven to be more accurate for predicting malignancy in the BI-RADS US 4A breast lesions of patients with dense breasts. This model may then be used to more accurately guide clinicians' choices about whether performing biopsies in breast cancer diagnosis.

摘要

目的:本研究旨在评估一种深度学习(DL)模型在预测致密乳腺中 BI-RADS US 4A 类乳腺病变恶性肿瘤方面的性能,该模型基于超声(US)和乳腺 X 线摄影(MG)图像的组合。

方法:共 992 名患者按 4:1 的比例随机分配到训练队列和测试队列,另外 218 名患者被纳入前瞻性验证队列。该 DL 模型通过整合 US 和 MG 图像进行开发。通过敏感性、特异性和受试者工作特征曲线(ROC)下面积(AUC)评估组合 DL 模型预测恶性肿瘤的性能。然后将组合的 DL 模型与临床列线图模型以及仅使用 US 图像和仅使用 MG 图像训练的 DL 模型进行比较。

结果:在测试队列中,组合的 DL 模型对预测乳腺病变恶性肿瘤具有令人满意的诊断性能,AUC 为 0.940(95%CI:0.874-1.000),在验证队列中 AUC 为 0.906(95%CI:0.817-0.995),明显高于临床列线图模型和仅用于 US 或 MG 的 DL 模型(P<0.05)。

结论:本研究开发了一种客观的 DL 模型,该模型结合了 US 和 MG 成像特征,被证明在预测致密乳腺中 BI-RADS US 4A 类乳腺病变的恶性肿瘤方面更准确。该模型可能有助于更准确地指导临床医生在乳腺癌诊断中是否进行活检的选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6222/11093459/9db237fe823d/js9-110-2604-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6222/11093459/36fa25410cfb/js9-110-2604-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6222/11093459/f3ec947abd7f/js9-110-2604-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6222/11093459/64facb2d02af/js9-110-2604-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6222/11093459/d57bee066e78/js9-110-2604-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6222/11093459/9db237fe823d/js9-110-2604-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6222/11093459/36fa25410cfb/js9-110-2604-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6222/11093459/f3ec947abd7f/js9-110-2604-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6222/11093459/64facb2d02af/js9-110-2604-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6222/11093459/d57bee066e78/js9-110-2604-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6222/11093459/9db237fe823d/js9-110-2604-g005.jpg

相似文献

[1]
Deep learning combining mammography and ultrasound images to predict the malignancy of BI-RADS US 4A lesions in women with dense breasts: a diagnostic study.

Int J Surg. 2024-5-1

[2]
Mammography in combination with breast ultrasonography versus mammography for breast cancer screening in women at average risk.

Cochrane Database Syst Rev. 2023-3-31

[3]
Application Value of Deep Learning-Based AI Model in the Classification of Breast Nodules.

Br J Hosp Med (Lond). 2025-6-25

[4]
Deep Learning-Based DCE-MRI Automatic Segmentation in Predicting Lesion Nature in BI-RADS Category 4.

J Imaging Inform Med. 2024-11-25

[5]
Using a Large Language Model for Breast Imaging Reporting and Data System Classification and Malignancy Prediction to Enhance Breast Ultrasound Diagnosis: Retrospective Study.

JMIR Med Inform. 2025-6-11

[6]
Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer.

Clin Orthop Relat Res. 2023-11-1

[7]
Reducing unnecessary biopsies of BI-RADS 4 lesions based on a deep learning model for mammography.

Front Oncol. 2025-6-3

[8]
The application of multimodal ultrasound examination in the differential diagnosis of benign and malignant breast lesions of BI-RADS category 4.

Front Med (Lausanne). 2025-6-9

[9]
Influence of BI-RADS Breast Density Scores on the Implementation of Supplemental Imaging Modalities in Those With Average Risk and Negative Mammogram by Primary Care Providers in British Columbia.

Can Assoc Radiol J. 2025-8

[10]
Developing and Evaluating a Nomogram Model Predicting Axillary Lymph Node Metastasis of Triple-Negative Breast Cancer Based on Multimodal Imaging Characteristics.

Acad Radiol. 2025-8

引用本文的文献

[1]
Optimizing breast lesions diagnosis and decision-making with a deep learning fusion model integrating ultrasound and mammography: a dual-center retrospective study.

Breast Cancer Res. 2025-5-14

[2]
A deep learning-based multimodal medical imaging model for breast cancer screening.

Sci Rep. 2025-4-26

[3]
Clinical Application of Artificial Intelligence in Ultrasound Imaging for Oncology.

JMA J. 2025-1-15

[4]
Harnessing Artificial Intelligence to Enhance Global Breast Cancer Care: A Scoping Review of Applications, Outcomes, and Challenges.

Cancers (Basel). 2025-1-9

[5]
Deep learning-assisted diagnosis of benign and malignant parotid tumors based on ultrasound: a retrospective study.

BMC Cancer. 2024-4-23

本文引用的文献

[1]
A High-Performance Deep Neural Network Model for BI-RADS Classification of Screening Mammography.

Sensors (Basel). 2022-2-3

[2]
BI-RADS Reading of Non-Mass Lesions on DCE-MRI and Differential Diagnosis Performed by Radiomics and Deep Learning.

Front Oncol. 2021-11-1

[3]
A new nomogram for predicting the malignant diagnosis of Breast Imaging Reporting and Data System (BI-RADS) ultrasonography category 4A lesions in women with dense breast tissue in the diagnostic setting.

Quant Imaging Med Surg. 2021-7

[4]
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.

CA Cancer J Clin. 2021-5

[5]
A deep learning model integrating mammography and clinical factors facilitates the malignancy prediction of BI-RADS 4 microcalcifications in breast cancer screening.

Eur Radiol. 2021-8

[6]
Medical Image Analysis using Convolutional Neural Networks: A Review.

J Med Syst. 2018-10-8

[7]
Artificial intelligence in radiology.

Nat Rev Cancer. 2018-8

[8]
Addition of ultrasound to mammography in the case of dense breast tissue: systematic review and meta-analysis.

Br J Cancer. 2018-5-8

[9]
Deep Convolutional Neural Networks for breast cancer screening.

Comput Methods Programs Biomed. 2018-1-11

[10]
ACR BI-RADS Assessment Category 4 Subdivisions in Diagnostic Mammography: Utilization and Outcomes in the National Mammography Database.

Radiology. 2018-1-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索