文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过单细胞测序和机器学习鉴定前列腺癌中的巨噬细胞特征。

Identification macrophage signatures in prostate cancer by single-cell sequencing and machine learning.

机构信息

Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.

Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.

出版信息

Cancer Immunol Immunother. 2024 Feb 13;73(3):41. doi: 10.1007/s00262-024-03633-5.


DOI:10.1007/s00262-024-03633-5
PMID:38349474
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10864475/
Abstract

BACKGROUND: The tumor microenvironment (TME) encompasses a variety of cells that influence immune responses and tumor growth, with tumor-associated macrophages (TAM) being a crucial component of the TME. TAM can guide prostate cancer in different directions in response to various external stimuli. METHODS: First, we downloaded prostate cancer single-cell sequencing data and second-generation sequencing data from multiple public databases. From these data, we identified characteristic genes associated with TAM clusters. We then employed machine learning techniques to select the most accurate TAM gene set and developed a TAM-related risk label for prostate cancer. We analyzed the tumor-relatedness of the TAM-related risk label and different risk groups within the population. Finally, we validated the accuracy of the prognostic label using single-cell sequencing data, qPCR, and WB assays, among other methods. RESULTS: In this study, the TAM_2 cell cluster has been identified as promoting the progression of prostate cancer, possibly representing M2 macrophages. The 9 TAM feature genes selected through ten machine learning methods and demonstrated their effectiveness in predicting the progression of prostate cancer patients. Additionally, we have linked these TAM feature genes to clinical pathological characteristics, allowing us to construct a nomogram. This nomogram provides clinical practitioners with a quantitative tool for assessing the prognosis of prostate cancer patients. CONCLUSION: This study has analyzed the potential relationship between TAM and PCa and established a TAM-related prognostic model. It holds promise as a valuable tool for the management and treatment of PCa patients.

摘要

背景:肿瘤微环境(TME)包含多种影响免疫反应和肿瘤生长的细胞,肿瘤相关巨噬细胞(TAM)是 TME 的重要组成部分。TAM 可以根据各种外部刺激,将前列腺癌引导到不同的方向。

方法:首先,我们从多个公共数据库下载了前列腺癌单细胞测序数据和第二代测序数据。从这些数据中,我们确定了与 TAM 簇相关的特征基因。然后,我们采用机器学习技术选择最准确的 TAM 基因集,并为前列腺癌开发了一个与 TAM 相关的风险标签。我们分析了 TAM 相关风险标签与人群中不同风险组的肿瘤相关性。最后,我们使用单细胞测序数据、qPCR 和 WB 等方法验证了预后标签的准确性。

结果:在这项研究中,已经确定 TAM_2 细胞簇促进了前列腺癌的进展,可能代表 M2 巨噬细胞。通过十种机器学习方法选择的 9 个 TAM 特征基因,证明了它们在预测前列腺癌患者进展方面的有效性。此外,我们还将这些 TAM 特征基因与临床病理特征联系起来,构建了一个列线图。该列线图为临床医生提供了一种评估前列腺癌患者预后的定量工具。

结论:本研究分析了 TAM 与 PCa 之间的潜在关系,并建立了一个与 TAM 相关的预后模型。它有望成为管理和治疗 PCa 患者的有价值的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b666/10992528/dc6bad2b467c/262_2024_3633_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b666/10992528/ab3a7901a324/262_2024_3633_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b666/10992528/7ef11988c127/262_2024_3633_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b666/10992528/ef6d7f3c6258/262_2024_3633_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b666/10992528/002c25dfe33e/262_2024_3633_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b666/10992528/77878131187c/262_2024_3633_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b666/10992528/dc6bad2b467c/262_2024_3633_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b666/10992528/ab3a7901a324/262_2024_3633_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b666/10992528/7ef11988c127/262_2024_3633_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b666/10992528/ef6d7f3c6258/262_2024_3633_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b666/10992528/002c25dfe33e/262_2024_3633_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b666/10992528/77878131187c/262_2024_3633_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b666/10992528/dc6bad2b467c/262_2024_3633_Fig6_HTML.jpg

相似文献

[1]
Identification macrophage signatures in prostate cancer by single-cell sequencing and machine learning.

Cancer Immunol Immunother. 2024-2-13

[2]
Comprehensive scRNA-seq analysis to identify new markers of M2 macrophages for predicting the prognosis of prostate cancer.

Ann Med. 2024-12

[3]
Identification and validation of cancer-associated fibroblast-related subtypes and the prognosis model of biochemical recurrence in prostate cancer based on single-cell and bulk RNA sequencing.

J Cancer Res Clin Oncol. 2023-10

[4]
Comprehensive analysis of macrophage-related genes in prostate cancer by integrated analysis of single-cell and bulk RNA sequencing.

Aging (Albany NY). 2024-4-24

[5]
Integrated analysis of single-cell and bulk RNA sequencing identifies a signature based on macrophage marker genes involved in prostate cancer prognosis and treatment responsiveness.

Funct Integr Genomics. 2023-4-3

[6]
Integration of single-cell and bulk RNA sequencing to establish a prognostic signature based on tumor-associated macrophages in colorectal cancer.

BMC Gastroenterol. 2023-11-10

[7]
The molecular feature of macrophages in tumor immune microenvironment of glioma patients.

Comput Struct Biotechnol J. 2021-8-14

[8]
Multi-omics analysis reveals a macrophage-related marker gene signature for prognostic prediction, immune landscape, genomic heterogeneity, and drug choices in prostate cancer.

Front Immunol. 2023

[9]
Dissecting prostate Cancer: Single-Cell insight into Macrophage Diversity, molecular Prognosticators, and the role of Peptidylprolyl Isomerase F.

Int Immunopharmacol. 2024-9-10

[10]
Comprehensive Analysis of m5C Methylation Regulatory Genes and Tumor Microenvironment in Prostate Cancer.

Front Immunol. 2022

引用本文的文献

[1]
Navigating the role of protein lactylation in prostate cancer and its implications for immunotherapy.

J Cancer. 2025-6-12

[2]
A novel tumor-associated macrophage risk signature predicts prognosis and immunotherapy response in lung adenocarcinoma.

Am J Cancer Res. 2025-3-15

[3]
Single-Cell Sequencing: Genomic and Transcriptomic Approaches in Cancer Cell Biology.

Int J Mol Sci. 2025-2-27

[4]
Identification of molecular subtypes based on chromatin regulator-related genes and experimental verification of the role of ASCL1 in conferring chemotherapy resistance to breast cancer.

Front Immunol. 2024

本文引用的文献

[1]
Macrophages in immunoregulation and therapeutics.

Signal Transduct Target Ther. 2023-5-22

[2]
Apolipoprotein E induces pathogenic senescent-like myeloid cells in prostate cancer.

Cancer Cell. 2023-3-13

[3]
Macrophages promote anti-androgen resistance in prostate cancer bone disease.

J Exp Med. 2023-4-3

[4]
Cancer statistics, 2023.

CA Cancer J Clin. 2023-1

[5]
From degenerative disease to malignant tumors: Insight to the function of ApoE.

Biomed Pharmacother. 2023-2

[6]
Single cell analysis of cribriform prostate cancer reveals cell intrinsic and tumor microenvironmental pathways of aggressive disease.

Nat Commun. 2022-10-13

[7]
The role of exosomes in the tumour microenvironment on macrophage polarisation.

Biochim Biophys Acta Rev Cancer. 2022-11

[8]
Qi Ling decreases paclitaxel resistance in the human prostate cancer by reversing tumor-associated macrophages function.

Aging (Albany NY). 2022-2-22

[9]
The relationship between lipoprotein A and other lipids with prostate cancer risk: A multivariable Mendelian randomisation study.

PLoS Med. 2022-1

[10]
Lipid-loaded tumor-associated macrophages sustain tumor growth and invasiveness in prostate cancer.

J Exp Med. 2022-2-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索