Suppr超能文献

基于单细胞和 bulk RNA 测序的前列腺癌中与癌症相关成纤维细胞相关亚型的鉴定和验证,以及生化复发的预后模型。

Identification and validation of cancer-associated fibroblast-related subtypes and the prognosis model of biochemical recurrence in prostate cancer based on single-cell and bulk RNA sequencing.

机构信息

Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China.

Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wujin Road 85, Shanghai, 200080, China.

出版信息

J Cancer Res Clin Oncol. 2023 Oct;149(13):11379-11395. doi: 10.1007/s00432-023-05011-7. Epub 2023 Jun 28.

Abstract

BACKGROUND

Cancer-associated fibroblasts (CAFs) are an essential component of the tumor immune microenvironment that are involved in extracellular matrix (ECM) remodeling. We aim to investigate the characteristics of CAFs in prostate cancer and develop a biochemical recurrence (BCR)-related CAF signature for predicting the prognosis of PCa patients.

METHODS

The bulk RNA-seq and relevant clinical information were obtained from the TCGA and GEO databases, respectively. The infiltration scores of CAFs in prostate cancer patients were calculated using the MCP counter and EPIC algorithms. The single-cell RNA sequencing (scRNA-seq) was downloaded from the GEO database. Subsequently, univariate Cox regression analysis was employed to identify prognostic genes associated with CAFs. We identified two subtypes (C1 and C2) of prostate cancer that were associated with CAFs via non-negative matrix factorization (NMF) clustering. In addition, the BCR-related CAF signatures were constructed using Lasso regression analysis. Finally, a nomogram model was established based on the risk score and clinical characteristics of the patients.

RESULTS

Initially, we found that patients with high CAF infiltration scores had shorter biochemical recurrence-free survival (BCRFS) times. Subsequently, CAFs in four pairs of tumors and paracancerous tissues were identified. We discovered 253 significantly differentially expressed genes, of which 13 had prognostic significance. Using NMF clustering, we divided PCa patients into C1 and C2 subgroups, with the C1 subgroup having a worse prognosis and substantially enriched cell cycle, homologous recombination, and mismatch repair pathways. Furthermore, a BCR-related CAFs signature was established. Multivariate COX regression analysis confirmed that the BCR-related CAFs signature was an independent prognostic factor for BCR in PCa. In addition, the nomogram was based on the clinical characteristics and risk scores of the patient and demonstrated high accuracy and reliability for predicting BCR. Lastly, our findings indicate that the risk score may be a useful tool for predicting PCa patients' sensitivity to immunotherapy and drug treatment.

CONCLUSION

NMF clustering based on CAF-related genes revealed distinct TME immune characteristics between groups. The BCR-related CAF signature accurately predicted prognosis and immunotherapy response in prostate cancer patients, offering a promising new approach to cancer treatment.

摘要

背景

癌症相关成纤维细胞(CAFs)是肿瘤免疫微环境的重要组成部分,参与细胞外基质(ECM)重塑。本研究旨在探究前列腺癌中 CAFs 的特征,并建立与生化复发(BCR)相关的 CAF 标志物,以预测 PCa 患者的预后。

方法

从 TCGA 和 GEO 数据库中分别获取批量 RNA-seq 和相关临床信息。使用 MCP counter 和 EPIC 算法计算前列腺癌患者中 CAFs 的浸润评分。从 GEO 数据库中下载单细胞 RNA 测序(scRNA-seq)数据。随后,采用单因素 Cox 回归分析鉴定与 CAFs 相关的预后基因。通过非负矩阵分解(NMF)聚类,我们鉴定出两种与 CAFs 相关的前列腺癌亚型(C1 和 C2)。此外,采用 Lasso 回归分析构建了与 BCR 相关的 CAF 标志物。最后,基于患者的风险评分和临床特征建立了诺莫图模型。

结果

首先,我们发现高 CAF 浸润评分患者的生化无复发生存时间(BCRFS)更短。随后,在四对肿瘤和癌旁组织中鉴定出 CAFs。我们发现 253 个差异表达基因,其中 13 个具有预后意义。通过 NMF 聚类,我们将 PCa 患者分为 C1 和 C2 亚组,其中 C1 亚组预后较差,且细胞周期、同源重组和错配修复途径明显富集。此外,建立了与 BCR 相关的 CAFs 标志物。多因素 COX 回归分析证实,与 BCR 相关的 CAFs 标志物是 PCa 患者 BCR 的独立预后因素。此外,基于患者的临床特征和风险评分建立的诺莫图具有较高的预测 BCR 准确性和可靠性。最后,我们的研究结果表明,风险评分可能是预测 PCa 患者对免疫治疗和药物治疗敏感性的有用工具。

结论

基于 CAF 相关基因的 NMF 聚类揭示了不同分组间肿瘤免疫微环境的特征。与 BCR 相关的 CAF 标志物可准确预测前列腺癌患者的预后和免疫治疗反应,为癌症治疗提供了一种有前景的新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验