Suppr超能文献

利用统计建模和自然语言处理估计儿科急诊分诊中的种族和语言差异。

Estimation of racial and language disparities in pediatric emergency department triage using statistical modeling and natural language processing.

机构信息

Department of Health Services Administration, School of Health Professions, The University of Alabama at Birmingham, Birmingham, AL 35233, United States.

出版信息

J Am Med Inform Assoc. 2024 Apr 3;31(4):958-967. doi: 10.1093/jamia/ocae018.

Abstract

OBJECTIVES

The study aims to assess racial and language disparities in pediatric emergency department (ED) triage using analytical techniques and provide insights into the extent and nature of the disparities in the ED setting.

MATERIALS AND METHODS

The study analyzed a cross-sectional dataset encompassing ED visits from January 2019 to April 2021. The study utilized analytical techniques, including K-mean clustering (KNN), multivariate adaptive regression splines (MARS), and natural language processing (NLP) embedding. NLP embedding and KNN were employed to handle the chief complaints and categorize them into clusters, while the MARS was used to identify significant interactions among the clinical features. The study also explored important variables, including age-adjusted vital signs. Multiple logistic regression models with varying specifications were developed to assess the robustness of analysis results.

RESULTS

The study consistently found that non-White children, especially African American (AA) and Hispanic, were often under-triaged, with AA children having >2 times higher odds of receiving lower acuity scores compared to White children. While the results are generally consistent, incorporating relevant variables modified the results for specific patient groups (eg, Asians).

DISCUSSION

By employing a comprehensive analysis methodology, the study checked the robustness of the analysis results on racial and language disparities in pediatric ED triage. The study also recognized the significance of analytical techniques in assessing pediatric health conditions and analyzing disparities.

CONCLUSION

The study's findings highlight the significant need for equal and fair assessment and treatment in the pediatric ED, regardless of their patients' race and language.

摘要

目的

本研究旨在利用分析技术评估儿科急诊分诊中的种族和语言差异,并深入了解急诊环境中差异的程度和性质。

材料和方法

本研究分析了一个涵盖 2019 年 1 月至 2021 年 4 月期间急诊就诊的横截面数据集。该研究采用了分析技术,包括 K-均值聚类(KNN)、多变量自适应回归样条(MARS)和自然语言处理(NLP)嵌入。NLP 嵌入和 KNN 用于处理主要投诉并将其分类为聚类,而 MARS 用于识别临床特征之间的显著交互作用。该研究还探索了重要变量,包括年龄调整后的生命体征。开发了具有不同规格的多项逻辑回归模型,以评估分析结果的稳健性。

结果

该研究一致发现,非白人儿童,尤其是非裔美国人和西班牙裔,往往分诊不足,与白人儿童相比,非裔美国儿童接受较低严重程度评分的几率高出 2 倍以上。虽然结果基本一致,但纳入相关变量会改变特定患者群体(例如,亚洲人)的结果。

讨论

通过采用综合分析方法,本研究检查了分析儿科急诊分诊中种族和语言差异的结果的稳健性。该研究还认识到分析技术在评估儿科健康状况和分析差异方面的重要性。

结论

本研究的结果强调了在儿科急诊中无论患者的种族和语言如何,都需要进行平等和公平的评估和治疗。

相似文献

2
Racial Differences in Pediatric Emergency Department Triage Scores.儿科急诊科分诊分数的种族差异。
J Emerg Med. 2016 May;50(5):720-7. doi: 10.1016/j.jemermed.2015.02.056. Epub 2016 Feb 15.
3
Racial and Language Disparities in Pediatric Emergency Department Triage.儿科急诊科分诊中的种族和语言差异
Pediatr Emerg Care. 2022 Feb 1;38(2):e556-e562. doi: 10.1097/PEC.0000000000002439.
7
Sociodemographic Disparities in Queue Jumping for Emergency Department Care.社会人口学差异与急诊插队现象
JAMA Netw Open. 2023 Jul 3;6(7):e2326338. doi: 10.1001/jamanetworkopen.2023.26338.

本文引用的文献

5
Racial and Language Disparities in Pediatric Emergency Department Triage.儿科急诊科分诊中的种族和语言差异
Pediatr Emerg Care. 2022 Feb 1;38(2):e556-e562. doi: 10.1097/PEC.0000000000002439.
10
Validity of triage systems for paediatric emergency care: a systematic review.儿科急诊分诊系统的有效性:系统评价。
Emerg Med J. 2017 Nov;34(11):711-719. doi: 10.1136/emermed-2016-206058. Epub 2017 Oct 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验