Suppr超能文献

基于深度学习的自动荧光光谱法校正白内障对黄斑色素光学密度测量的影响。

Deep learning-based correction of cataract-induced influence on macular pigment optical density measurement by autofluorescence spectroscopy.

机构信息

Department of Ophthalmology, Seirei Hamamatsu General Hospital, Hamamatsu City, Shizuoka, Japan.

Department of Medical Spectroscopy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.

出版信息

PLoS One. 2024 Feb 13;19(2):e0298132. doi: 10.1371/journal.pone.0298132. eCollection 2024.

Abstract

PURPOSE

Measurements of macular pigment optical density (MPOD) using the autofluorescence spectroscopy yield underestimations of actual values in eyes with cataracts. Previously, we proposed a correction method for this error using deep learning (DL); however, the correction performance was validated through internal cross-validation. This cross-sectional study aimed to validate this approach using an external validation dataset.

METHODS

MPODs at 0.25°, 0.5°, 1°, and 2° eccentricities and macular pigment optical volume (MPOV) within 9° eccentricity were measured using SPECTRALIS (Heidelberg Engineering, Heidelberg, Germany) in 197 (training dataset inherited from our previous study) and 157 eyes (validating dataset) before and after cataract surgery. A DL model was trained to predict the corrected value from the pre-operative value using the training dataset, and we measured the discrepancy between the corrected value and the actual postoperative value. Subsequently, the prediction performance was validated using a validation dataset.

RESULTS

Using the validation dataset, the mean absolute values of errors for MPOD and MPOV corrected using DL ranged from 8.2 to 12.4%, which were lower than values with no correction (P < 0.001, linear mixed model with Tukey's test). The error depended on the autofluorescence image quality used to calculate MPOD. The mean errors in high and moderate quality images ranged from 6.0 to 11.4%, which were lower than those of poor quality images.

CONCLUSION

The usefulness of the DL correction method was validated. Deep learning reduced the error for a relatively good autofluorescence image quality. Poor-quality images were not corrected.

摘要

目的

使用自发荧光光谱法测量黄斑色素光学密度(MPOD)会导致白内障眼中实际值的低估。此前,我们提出了一种使用深度学习(DL)纠正此错误的方法;然而,该方法的校正性能是通过内部交叉验证验证的。本横断面研究旨在使用外部验证数据集来验证这种方法。

方法

使用 SPECTRALIS(德国海德堡工程公司)在 197 只眼(继承自我们之前研究的训练数据集)和 157 只眼(验证数据集)术前和术后白内障手术前测量 0.25°、0.5°、1°和 2°偏心处的 MPOD 和 9°偏心处的黄斑色素光体积(MPOV)。使用训练数据集通过 DL 模型从术前值预测校正值,并测量校正值与实际术后值之间的差异。随后,使用验证数据集验证预测性能。

结果

使用验证数据集,使用 DL 校正的 MPOD 和 MPOV 的平均绝对误差值范围为 8.2%至 12.4%,低于无校正值(P<0.001,Tukey 检验的线性混合模型)。误差取决于用于计算 MPOD 的自发荧光图像质量。高质量和中等质量图像的平均误差范围为 6.0%至 11.4%,低于低质量图像。

结论

DL 校正方法的有效性得到了验证。深度学习降低了相对较好的自发荧光图像质量的误差。低质量图像未得到校正。

相似文献

3
Grade of Cataract and Its Influence on Measurement of Macular Pigment Optical Density Using Autofluorescence Imaging.
Invest Ophthalmol Vis Sci. 2018 Jun 1;59(7):3011-3019. doi: 10.1167/iovs.17-23699.
4
7
Macular pigment changes after cataract surgery with yellow-tinted intraocular lens implantation.
PLoS One. 2021 Mar 25;16(3):e0248506. doi: 10.1371/journal.pone.0248506. eCollection 2021.
9
The effect of age and cataract surgery on macular pigment optic density: a cross-sectional, comparative study.
Graefes Arch Clin Exp Ophthalmol. 2014 Feb;252(2):213-8. doi: 10.1007/s00417-013-2424-2. Epub 2013 Jul 20.
10
Macular pigment optical density in a healthy Chinese population.
Acta Ophthalmol. 2015 Nov;93(7):e550-5. doi: 10.1111/aos.12645. Epub 2015 Jan 14.

引用本文的文献

2
Macular pigment optical density and measurement technology based on artificial intelligence: a narrative review.
Int J Ophthalmol. 2025 Jun 18;18(6):1152-1162. doi: 10.18240/ijo.2025.06.23. eCollection 2025.
3
Evaluation of a Portable Handheld Heterochromatic Flicker Photometer in Measuring Macular Pigment Optical Density.
Diagnostics (Basel). 2025 Feb 11;15(4):431. doi: 10.3390/diagnostics15040431.

本文引用的文献

2
Spatial distribution of macular pigment estimated by autofluorescence imaging in elderly Japanese individuals.
Jpn J Ophthalmol. 2020 Mar;64(2):160-170. doi: 10.1007/s10384-020-00716-5. Epub 2020 Jan 27.
3
Standardizing the Assessment of Macular Pigment Using a Dual-Wavelength Autofluorescence Technique.
Transl Vis Sci Technol. 2019 Dec 18;8(6):41. doi: 10.1167/tvst.8.6.41. eCollection 2019 Nov.
4
Grade of Cataract and Its Influence on Measurement of Macular Pigment Optical Density Using Autofluorescence Imaging.
Invest Ophthalmol Vis Sci. 2018 Jun 1;59(7):3011-3019. doi: 10.1167/iovs.17-23699.
5
Optical Detection of Macular Pigment Formation in Premature Infants.
Transl Vis Sci Technol. 2018 Jul 9;7(4):3. doi: 10.1167/tvst.7.4.3. eCollection 2018 Jul.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验