Department of Mechanical Engineering, Stanford University, Stanford, California, USA.
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey, USA.
Electrophoresis. 2024 Apr;45(7-8):676-686. doi: 10.1002/elps.202300204. Epub 2024 Feb 13.
Understanding electrokinetic transport in nanochannels and nanopores is essential for emerging biological and electrochemical applications. The viscoelectric effect is an important mechanism implicated in the increase of local viscosity due to the polarization of a solvent under a strong electric field. However, most analyses of the viscoelectric effect have been limited to numerical analyses. In this work, we present a set of analytical solutions applicable to the physical description of viscoelectric effects in nanochannel electrokinetic systems. To achieve such closed-form solutions, we employ the Debye-Hückel approximation of small diffuse charge layer potentials compared to the thermal potential. We analyze critical parameters, including electroosmotic flow profiles, electroosmotic mobility, flow rate, and channel conductance. We compare and benchmark our analytical solutions with published predictions from numerical models. Importantly, we leverage these analytical solutions to identify essential thermophysical and nondimensional parameters that govern the behavior of these systems. We identify scaling parameters and relations among surface charge density, ionic strength, and nanochannel height.
理解纳米通道和纳米孔中的电动输运对于新兴的生物和电化学应用至关重要。粘滞电动效应是一种重要的机制,它涉及由于强电场下溶剂的极化而导致局部粘度增加。然而,大多数对粘滞电动效应的分析都仅限于数值分析。在这项工作中,我们提出了一组适用于纳米通道电动动力学系统中粘滞电动效应物理描述的解析解。为了得到这些封闭形式的解,我们采用了 Debye-Hückel 近似,与热势相比,小的扩散电荷层电势。我们分析了关键参数,包括电渗流分布、电渗流迁移率、流速和通道电导。我们将我们的解析解与数值模型的已发表预测进行了比较和基准测试。重要的是,我们利用这些解析解来确定控制这些系统行为的基本热物理和无量纲参数。我们确定了表面电荷密度、离子强度和纳米通道高度之间的标度参数和关系。