Pennathur Sumita, Santiago Juan G
Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA.
Anal Chem. 2005 Nov 1;77(21):6772-81. doi: 10.1021/ac050835y.
Electrokinetic transport in fluidic channels facilitates control and separation of ionic species. In nanometer-scale electrokinetic systems, the electric double layer thickness is comparable to characteristic channel dimensions, and this results in nonuniform velocity profiles and strong electric fields transverse to the flow. In such channels, streamwise and transverse electromigration fluxes contribute to the separation and dispersion of analyte ions. In this paper, we report on analytical and numerical models for nanochannel electrophoretic transport and separation of neutral and charged analytes. We present continuum-based theoretical studies in nanoscale channels with characteristic depths on the order of the Debye length. Our model yields analytical expressions for electroosmotic flow, species transport velocity, streamwise-transverse concentration field distribution, and ratio of apparent electrophoretic mobility for a nanochannel to (standard) ion mobility. The model demonstrates that the effective mobility governing electrophoretic transport of charged species in nanochannels depends not only on electrolyte mobility values but also on zeta potential, ion valence, and background electrolyte concentration. We also present a method we term electrokinetic separation by ion valence (EKSIV) whereby both ion valence and ion mobility may be determined independently from a comparison of micro- and nanoscale transport measurements. In the second of this two-paper series, we present experimental validation of our models.
流体通道中的电动输运有助于离子物种的控制与分离。在纳米尺度的电动系统中,电双层厚度与特征通道尺寸相当,这导致速度分布不均匀以及垂直于流动方向的强电场。在这类通道中,沿流向和横向的电迁移通量有助于分析物离子的分离与扩散。在本文中,我们报告了用于纳米通道电泳输运以及中性和带电分析物分离的解析模型与数值模型。我们展示了在特征深度为德拜长度量级的纳米尺度通道中基于连续介质的理论研究。我们的模型给出了电渗流、物种输运速度、沿流向 - 横向浓度场分布以及纳米通道表观电泳迁移率与(标准)离子迁移率之比的解析表达式。该模型表明,在纳米通道中控制带电物种电泳输运的有效迁移率不仅取决于电解质迁移率值,还取决于zeta 电位、离子价态和背景电解质浓度。我们还提出了一种我们称为基于离子价态的电动分离(EKSIV)的方法,通过比较微米和纳米尺度的输运测量结果,可以独立确定离子价态和离子迁移率。在这个两篇论文系列的第二篇中,我们展示了对我们模型的实验验证。