Desrivières Sylvane, Zhang Zuo, Robinson Lauren, Whelan Robert, Jollans Lee, Wang Zijian, Nees Frauke, Chu Congying, Bobou Marina, Du Dongping, Cristea Ilinca, Banaschewski Tobias, Barker Gareth, Bokde Arun, Grigis Antoine, Garavan Hugh, Heinz Andreas, Bruhl Rudiger, Martinot Jean-Luc, Martinot Marie-Laure Paillère, Artiges Eric, Orfanos Dimitri Papadopoulos, Poustka Luise, Hohmann Sarah, Millenet Sabina, Fröhner Juliane, Smolka Michael, Vaidya Nilakshi, Walter Henrik, Winterer Jeanne, Broulidakis M, van Noort Betteke, Stringaris Argyris, Penttilä Jani, Grimmer Yvonne, Insensee Corinna, Becker Andreas, Zhang Yuning, King Sinead, Sinclair Julia, Schumann Gunter, Schmidt Ulrike
Res Sq. 2024 Feb 1:rs.3.rs-3777784. doi: 10.21203/rs.3.rs-3777784/v1.
This study uses machine learning models to uncover diagnostic and risk prediction markers for eating disorders (EDs), major depressive disorder (MDD), and alcohol use disorder (AUD). Utilizing case-control samples (ages 18-25 years) and a longitudinal population-based sample (n=1,851), the models, incorporating diverse data domains, achieved high accuracy in classifying EDs, MDD, and AUD from healthy controls. The area under the receiver operating characteristic curves (AUC-ROC [95% CI]) reached 0.92 [0.86-0.97] for AN and 0.91 [0.85-0.96] for BN, without relying on body mass index as a predictor. The classification accuracies for MDD (0.91 [0.88-0.94]) and AUD (0.80 [0.74-0.85]) were also high. Each data domain emerged as accurate classifiers individually, with personality distinguishing AN, BN, and their controls with AUC-ROCs ranging from 0.77 to 0.89. The models demonstrated high transdiagnostic potential, as those trained for EDs were also accurate in classifying AUD and MDD from healthy controls, and vice versa (AUC-ROCs, 0.75-0.93). Shared predictors, such as neuroticism, hopelessness, and symptoms of attention-deficit/hyperactivity disorder, were identified as reliable classifiers. For risk prediction in the longitudinal population sample, the models exhibited moderate performance (AUC-ROCs, 0.64-0.71), highlighting the potential of combining multi-domain data for precise diagnostic and risk prediction applications in psychiatry.
本研究使用机器学习模型来揭示饮食失调(ED)、重度抑郁症(MDD)和酒精使用障碍(AUD)的诊断和风险预测标志物。利用病例对照样本(年龄在18 - 25岁之间)和基于人群的纵向样本(n = 1851),这些纳入了不同数据领域的模型在从健康对照中分类ED、MDD和AUD方面取得了高精度。对于神经性厌食症(AN),受试者工作特征曲线下面积(AUC - ROC [95%置信区间])达到0.92 [0.86 - 0.97],对于神经性贪食症(BN)达到0.91 [0.85 - 0.96],且不依赖体重指数作为预测指标。MDD(0.91 [0.88 - 0.94])和AUD(0.80 [0.74 - 0.85])的分类准确率也很高。每个数据领域单独作为准确的分类器出现,个性特征区分AN、BN及其对照的AUC - ROC范围为0.77至0.89。这些模型显示出高跨诊断潜力,因为针对ED训练的模型在从健康对照中分类AUD和MDD时也很准确,反之亦然(AUC - ROC,0.75 - 0.93)。神经质、绝望和注意力缺陷/多动障碍症状等共同预测指标被确定为可靠的分类器。对于纵向人群样本中的风险预测,模型表现出中等性能(AUC - ROC,0.64 - 0.71),突出了结合多领域数据在精神病学中进行精确诊断和风险预测应用的潜力。