Zhu Tan, Wang Wuyi, Chen Yu, Kranzler Henry R, Li Chiang-Shan R, Bi Jinbo
Department of Computer Science and Engineering, School of Engineering, University of Connecticut, Storrs, Connecticut.
Data Analytics Department, Yale New Haven Health System, New Haven, Connecticut.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2024 Mar;9(3):326-336. doi: 10.1016/j.bpsc.2023.08.010. Epub 2023 Sep 9.
Magnetic resonance imaging provides noninvasive tools to investigate alcohol use disorder (AUD) and nicotine use disorder (NUD) and neural phenotypes for genetic studies. A data-driven transdiagnostic approach could provide a new perspective on the neurobiology of AUD and NUD.
Using samples of individuals with AUD (n = 140), individuals with NUD (n = 249), and healthy control participants (n = 461) from the UK Biobank, we integrated clinical, neuroimaging, and genetic markers to identify biotypes of AUD and NUD. We partitioned participants with AUD and NUD based on resting-state functional connectivity (FC) features associated with clinical metrics. A multitask artificial neural network was trained to evaluate the cluster-defined biotypes and jointly infer AUD and NUD diagnoses.
Three biotypes-primary NUD, mixed NUD/AUD with depression and anxiety, and mixed AUD/NUD-were identified. Multitask classifiers incorporating biotype knowledge achieved higher area under the curve (AUD: 0.76, NUD: 0.74) than single-task classifiers without biotype differentiation (AUD: 0.61, NUD: 0.64). Cerebellar FC features were important in distinguishing the 3 biotypes. The biotype of mixed NUD/AUD with depression and anxiety demonstrated the largest number of FC features (n = 5), all related to the visual cortex, that significantly differed from healthy control participants and were validated in a replication sample (p < .05). A polymorphism in TNRC6A was associated with the mixed AUD/NUD biotype in both the discovery (p = 7.3 × 10) and replication (p = 4.2 × 10) sets.
Biotyping and multitask learning using FC features can characterize the clinical and genetic profiles of AUD and NUD and help identify cerebellar and visual circuit markers to differentiate the AUD/NUD group from the healthy control group. These markers support a new growing body of literature.
磁共振成像提供了非侵入性工具,用于研究酒精使用障碍(AUD)和尼古丁使用障碍(NUD)以及用于遗传研究的神经表型。一种数据驱动的跨诊断方法可为AUD和NUD的神经生物学提供新视角。
利用来自英国生物银行的酒精使用障碍患者样本(n = 140)、尼古丁使用障碍患者样本(n = 249)和健康对照参与者样本(n = 461),我们整合了临床、神经影像学和遗传标记,以识别AUD和NUD的生物型。我们根据与临床指标相关的静息态功能连接(FC)特征对AUD和NUD参与者进行划分。训练了一个多任务人工神经网络来评估聚类定义的生物型,并联合推断AUD和NUD诊断。
识别出三种生物型——原发性NUD、伴有抑郁和焦虑的混合NUD/AUD以及混合AUD/NUD。纳入生物型知识的多任务分类器比无生物型区分的单任务分类器获得了更高的曲线下面积(AUD:0.76,NUD:0.74)(AUD:0.61,NUD:0.64)。小脑FC特征在区分这三种生物型中很重要。伴有抑郁和焦虑的混合NUD/AUD生物型表现出最多的FC特征(n = 5),所有这些特征都与视觉皮层相关,与健康对照参与者有显著差异,并在一个复制样本中得到验证(p < 0.05)。TNRC6A中的一个多态性在发现集(p = 7.3×10)和复制集(p = 4.2×10)中均与混合AUD/NUD生物型相关。
使用FC特征进行生物分型和多任务学习可以表征AUD和NUD的临床和遗传特征,并有助于识别小脑和视觉回路标记,以将AUD/NUD组与健康对照组区分开来。这些标记支持了越来越多的新文献。