Schmitt-Ulms Cian, Kayabolen Alisan, Manero-Carranza Marcos, Zhou Nathan, Donnelly Keira, Nuccio Sabrina Pia, Kato Kazuki, Nishimasu Hiroshi, Gootenberg Jonathan S, Abudayyeh Omar O
McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
bioRxiv. 2024 Feb 1:2024.01.31.578223. doi: 10.1101/2024.01.31.578223.
RNA editing offers the opportunity to introduce either stable or transient modifications to nucleic acid sequence without permanent off-target effects, but installation of arbitrary edits into the transcriptome is currently infeasible. Here, we describe Programmable RNA Editing & Cleavage for Insertion, Substitution, and Erasure (PRECISE), a versatile RNA editing method for writing RNA of arbitrary length and sequence into existing pre-mRNAs via 5' or 3' trans-splicing. In trans-splicing, an exogenous template is introduced to compete with the endogenous pre-mRNA, allowing for replacement of upstream or downstream exon sequence. Using Cas7-11 cleavage of pre-mRNAs to bias towards editing outcomes, we boost the efficiency of RNA trans-splicing by 10-100 fold, achieving editing rates between 5-50% and 85% on endogenous and reporter transcripts, respectively, while maintaining high-fidelity. We demonstrate PRECISE editing across 11 distinct endogenous transcripts of widely varying expression levels, showcasing more than 50 types of edits, including all 12 possible transversions and transitions, insertions ranging from 1 to 1,863 nucleotides, and deletions. We show high efficiency replacement of exon 4 of MECP2, addressing most mutations that drive the Rett Syndrome; editing of SHANK3 transcripts, a gene involved in Autism; and replacement of exon 1 of HTT, removing the hallmark repeat expansions of Huntington's disease. Whole transcriptome sequencing reveals the high precision of PRECISE editing and lack of off-target trans-splicing activity. Furthermore, we combine payload engineering and ribozymes for protein-free, high-efficiency trans-splicing, with demonstrated efficiency in editing HTT exon 1 via AAV delivery. We show that the high activity of PRECISE editing enables editing in non-dividing neurons and patient-derived Huntington's disease fibroblasts. PRECISE editing markedly broadens the scope of genetic editing, is straightforward to deliver over existing gene editing tools like prime editing, lacks permanent off-targets, and can enable any type of genetic edit large or small, including edits not otherwise possible with existing RNA base editors, widening the spectrum of addressable diseases.
RNA编辑提供了对核酸序列进行稳定或瞬时修饰的机会,且不会产生永久性的脱靶效应,但目前将任意编辑引入转录组是不可行的。在此,我们描述了用于插入、替换和删除的可编程RNA编辑与切割(PRECISE),这是一种通用的RNA编辑方法,可通过5'或3'反式剪接将任意长度和序列的RNA写入现有的前体mRNA中。在反式剪接中,引入外源模板与内源性前体mRNA竞争,从而允许替换上游或下游外显子序列。利用前体mRNA的Cas7-11切割来偏向编辑结果,我们将RNA反式剪接的效率提高了10至100倍,在内源性转录本和报告转录本上的编辑率分别达到5-50%和85%,同时保持高保真度。我们展示了PRECISE编辑在11种表达水平差异很大的不同内源性转录本上的情况,展示了50多种类型的编辑,包括所有12种可能的颠换和转换、1至1863个核苷酸的插入以及缺失。我们展示了对MECP2外显子4的高效替换,解决了导致雷特综合征的大多数突变;对与自闭症相关的基因SHANK3转录本的编辑;以及对HTT外显子1的替换,消除了亨廷顿舞蹈病的标志性重复扩增。全转录组测序揭示了PRECISE编辑的高精度以及缺乏脱靶反式剪接活性。此外,我们将有效载荷工程与核酶相结合,实现无蛋白、高效的反式剪接,并通过腺相关病毒(AAV)递送在编辑HTT外显子1方面展示了效率。我们表明,PRECISE编辑的高活性能够在非分裂神经元和患者来源的亨廷顿舞蹈病成纤维细胞中进行编辑。PRECISE编辑显著拓宽了基因编辑的范围,比现有的基因编辑工具(如碱基编辑)更易于递送,没有永久性脱靶,并且能够实现任何大小的基因编辑,包括现有RNA碱基编辑器无法实现的编辑,从而扩大了可治疗疾病的范围。