Suppr超能文献

使用HMV - YOLO和先进特征增强模块增强危险材料车辆检测。

Enhancing hazardous material vehicle detection with advanced feature enhancement modules using HMV-YOLO.

作者信息

Wang Ling, Liu Bushi, Shao Wei, Li Zhe, Chang Kailu, Zhu Wenjie

机构信息

Faculty of Computer and Software Engineering, Huaiyin Institute of Technology, Huaian, China.

Nanjing University of Aeronautics and Astronautics Shenzhen Research Institute, Shenzhen, China.

出版信息

Front Neurorobot. 2024 Jan 30;18:1351939. doi: 10.3389/fnbot.2024.1351939. eCollection 2024.

Abstract

The transportation of hazardous chemicals on roadways has raised significant safety concerns. Incidents involving these substances often lead to severe and devastating consequences. Consequently, there is a pressing need for real-time detection systems tailored for hazardous material vehicles. However, existing detection methods face challenges in accurately identifying smaller targets and achieving high precision. This paper introduces a novel solution, HMV-YOLO, an enhancement of the YOLOv7-tiny model designed to address these challenges. Within this model, two innovative modules, CBSG and G-ELAN, are introduced. The CBSG module's mathematical model incorporates components such as Convolution (Conv2d), Batch Normalization (BN), SiLU activation, and Global Response Normalization (GRN) to mitigate feature collapse issues and enhance neuron activity. The G-ELAN module, building upon CBSG, further advances feature fusion. Experimental results showcase the superior performance of the enhanced model compared to the original one across various evaluation metrics. This advancement shows great promise for practical applications, particularly in the context of real-time monitoring systems for hazardous material vehicles.

摘要

危险化学品在道路上的运输引发了重大安全担忧。涉及这些物质的事故往往会导致严重且毁灭性的后果。因此,迫切需要为危险物品车辆量身定制的实时检测系统。然而,现有的检测方法在准确识别较小目标和实现高精度方面面临挑战。本文介绍了一种新颖的解决方案,即HMV - YOLO,它是对YOLOv7 - tiny模型的改进,旨在应对这些挑战。在该模型中,引入了两个创新模块,即CBSG和G - ELAN。CBSG模块的数学模型包含卷积(Conv2d)、批量归一化(BN)、SiLU激活和全局响应归一化(GRN)等组件,以缓解特征坍塌问题并增强神经元活动。G - ELAN模块在CBSG的基础上进一步推进了特征融合。实验结果表明,与原始模型相比,增强后的模型在各种评估指标上具有卓越的性能。这一进展在实际应用中显示出巨大潜力,特别是在危险物品车辆实时监测系统的背景下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9592/10861721/6648bb0b0cbb/fnbot-18-1351939-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验