Suppr超能文献

血液制品需求预测:迈向易腐产品的库存管理

Forecasting demand for blood products: Towards inventory management of a perishable product.

作者信息

Thakur Sanjay Kumar, Sinha Anil Kumar, Negi Dinesh Kumar, Singh Sompal

机构信息

P.G. Department of Zoology, Veer Kunwar Singh University, Ara, Bihar-802301, India.

Department of Regional Blood Transfusion Centre and Department of Pathology, Hindu Rao Hospital and NDM Medical College, Delhi-110007, India.

出版信息

Bioinformation. 2024 Jan 31;20(1):20-28. doi: 10.6026/973206300200020. eCollection 2024.

Abstract

Forecasting consumption of blood products can reduce their order frequency by 60% and inventory level by 40%. This also prevents shortage by balancing demand and supply. The study aimed to establish a "Simple Average with Mean Annual Increment" (SAMAI) method of time series forecasting and to compare its results with those of ARIMA, ratio to trend, and simple average to forecast demand of blood products. Monthly demand data of blood component from January 2017 to December 2022 (data set I) was used for creating a forecasting model. To avoid the effect of COVID19 pandemic instead of actual data of year 2020 and 2021, average monthly values of previous three years were used (data set II). The data from January to July 2023 were used as testing data set. To assess the fitness of model MAPE (Mean Absolute Percentage Error) was used. By SAMAI method MAPE were 18.82%, 13.392%, 14.516% and 27.637% respectively for of blood donation, blood issue, RDP issue and FFP issue for data set I. By Simple Average method MAPE were 20.05%, 12.09%, 29.06% and 34.85%, respectably. By Ratio-to-Trend method MAPE were 21.08%, 21.65%, 25.62% and 39.95% respectively. By SARIMA method MAPE were 12.99%, 19.59%, 37.15% and 31.94% respectively. The average MAPE was lower in data set II by all tested method and overall MAPE was lower by SAMAI method. The SAMAI method is simple and easy to perform. It can be used in the forecasting of blood components demand in medical institution without knowledge of advanced statistics.

摘要

预测血液制品的消耗量可将其订单频率降低60%,库存水平降低40%。这还能通过平衡供需来防止短缺。该研究旨在建立一种“年均增量简单平均法”(SAMAI)的时间序列预测方法,并将其结果与自回归积分移动平均模型(ARIMA)、趋势比率法和简单平均法预测血液制品需求的结果进行比较。使用2017年1月至2022年12月血液成分的月度需求数据(数据集I)创建预测模型。为避免新冠疫情的影响,2020年和2021年未使用实际数据,而是使用了前三年的月平均值(数据集II)。2023年1月至7月的数据用作测试数据集。使用平均绝对百分比误差(MAPE)来评估模型的拟合度。对于数据集I,通过SAMAI方法,献血、发血、红细胞悬液发放和新鲜冰冻血浆发放的MAPE分别为18.82%、13.392%、14.516%和27.637%。通过简单平均法,MAPE分别为20.05%、12.09%、29.06%和34.85%。通过趋势比率法,MAPE分别为21.08%、21.65%、25.62%和39.95%。通过季节性自回归积分移动平均模型(SARIMA)方法,MAPE分别为12.99%、19.59%、37.15%和31.94%。在数据集II中,所有测试方法的平均MAPE都较低,总体上SAMAI方法的MAPE更低。SAMAI方法简单易行。在无需高级统计学知识的情况下,它可用于医疗机构血液成分需求的预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3267/10859947/c32723c1b68f/973206300200020F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验