Grzegorczyk Marco, Aderhold Andrej, Husmeier Dirk
Johann Bernoulli Institute, University of Groningen, Groningen, The Netherlands.
Center for Computer Science, Universidade Federal do Rio Grande, Rio Grande, Brazil.
Methods Mol Biol. 2019;1883:49-94. doi: 10.1007/978-1-4939-8882-2_3.
A challenging problem in systems biology is the reconstruction of gene regulatory networks from postgenomic data. A variety of reverse engineering methods from machine learning and computational statistics have been proposed in the literature. However, deciding on the best method to adopt for a particular application or data set might be a confusing task. The present chapter provides a broad overview of state-of-the-art methods with an emphasis on conceptual understanding rather than a deluge of mathematical details, and the pros and cons of the various approaches are discussed. Guidance on practical applications with pointers to publicly available software implementations are included. The chapter concludes with a comprehensive comparative benchmark study on simulated data and a real-work application taken from the current plant systems biology.
系统生物学中的一个具有挑战性的问题是从后基因组数据重建基因调控网络。文献中已经提出了各种来自机器学习和计算统计学的逆向工程方法。然而,为特定应用或数据集选择最佳方法可能是一项令人困惑的任务。本章对当前的先进方法进行了广泛概述,重点在于概念理解而非大量的数学细节,并讨论了各种方法的优缺点。还包括了实际应用的指导以及指向公开可用软件实现的指针。本章最后对模拟数据进行了全面的比较基准研究,并给出了一个来自当前植物系统生物学的实际应用案例。