Suppr超能文献

用于预测新入院患者人数的时间序列模型。

Time series model for forecasting the number of new admission inpatients.

机构信息

Department of Information, Research Institute of Field Surgery, Daping Hospital of Army Medical University, 10 Changjiang Access Road, Chongqing, 400042, China.

出版信息

BMC Med Inform Decis Mak. 2018 Jun 15;18(1):39. doi: 10.1186/s12911-018-0616-8.

Abstract

BACKGROUND

Hospital crowding is a rising problem, effective predicting and detecting managment can helpful to reduce crowding. Our team has successfully proposed a hybrid model combining both the autoregressive integrated moving average (ARIMA) and the nonlinear autoregressive neural network (NARNN) models in the schistosomiasis and hand, foot, and mouth disease forecasting study. In this paper, our aim is to explore the application of the hybrid ARIMA-NARNN model to track the trends of the new admission inpatients, which provides a methodological basis for reducing crowding.

METHODS

We used the single seasonal ARIMA (SARIMA), NARNN and the hybrid SARIMA-NARNN model to fit and forecast the monthly and daily number of new admission inpatients. The root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) were used to compare the forecasting performance among the three models. The modeling time range of monthly data included was from January 2010 to June 2016, July to October 2016 as the corresponding testing data set. The daily modeling data set was from January 4 to September 4, 2016, while the testing time range included was from September 5 to October 2, 2016.

RESULTS

For the monthly data, the modeling RMSE and the testing RMSE, MAE and MAPE of SARIMA-NARNN model were less than those obtained from the single SARIMA or NARNN model, but the MAE and MAPE of modeling performance of SARIMA-NARNN model did not improve. For the daily data, all RMSE, MAE and MAPE of NARNN model were the lowest both in modeling stage and testing stage.

CONCLUSIONS

Hybrid model does not necessarily outperform its constituents' performances. It is worth attempting to explore the reliable model to forecast the number of new admission inpatients from different data.

摘要

背景

医院拥挤是一个日益严重的问题,有效的预测和检测管理有助于减少拥挤。我们的团队已经成功地提出了一种混合模型,将自回归综合移动平均(ARIMA)和非线性自回归神经网络(NARNN)模型结合在一起,用于血吸虫病和手足口病的预测研究。在本文中,我们的目的是探索混合 ARIMA-NARNN 模型在跟踪新入院患者趋势中的应用,为减少拥挤提供方法学基础。

方法

我们使用单季节性 ARIMA(SARIMA)、NARNN 和混合 SARIMA-NARNN 模型来拟合和预测每月和每日新入院患者人数。使用均方根误差(RMSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)来比较三种模型的预测性能。每月数据的建模时间范围包括从 2010 年 1 月至 2016 年 6 月,2016 年 7 月至 10 月作为相应的测试数据集。每日建模数据集为 2016 年 1 月 4 日至 9 月 4 日,而测试时间范围为 2016 年 9 月 5 日至 10 月 2 日。

结果

对于月度数据,SARIMA-NARNN 模型的建模 RMSE 和测试 RMSE、MAE 和 MAPE 均小于单 SARIMA 或 NARNN 模型的结果,但 SARIMA-NARNN 模型的建模性能的 MAE 和 MAPE 并没有提高。对于每日数据,NARNN 模型在建模阶段和测试阶段的所有 RMSE、MAE 和 MAPE 均最低。

结论

混合模型并不一定优于其组成部分的性能。值得尝试探索可靠的模型,从不同的数据预测新入院患者的数量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/6003180/edd6cfcdc6b0/12911_2018_616_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验