Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, Dallas, USA.
Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, Dallas, USA.
Phys Chem Chem Phys. 2024 Feb 28;26(9):7435-7445. doi: 10.1039/d3cp05572h.
Incorporation of artificial 3rd base pairs (unnatural base pairs, UBPs) has emerged as a fundamental technique in pursuit of expanding the genetic alphabet. 2,6-Dimethyl-2-isoquiniline-1-thione: D5SIC (DS) and 2-methoxy-3-methylnaphthalene: DNAM (DN), a potential unnatural base pair (UBP) developed by Romesberg and colleagues, has been shown to have remarkable capability for replication within DNA. Crystal structures of a polymerase/double-stranded DNA (ds-DNA) complex containing a DS-DN pair in the 3' terminus showed a parallelly stacked geometry for the pre-insertion, and an intercalated geometry for the post-insertion structure. Unconventional orientations of DS-DN inside a DNA duplex have inspired scientists to investigate the conformational orientations and structural properties of UBP-incorporated DNA. In recent years, computational simulations have been used to investigate the geometry of DS-DN within the DNA duplex; nevertheless, unresolved questions persist owing to inconclusive findings. In this work, we investigate the structural and dynamical properties of DS and DN inside a ds-DNA strand in aqueous solution considering both short and long DNA templates using polarizable, and non-polarizable classical MD simulations. Flexible conformational change of UBP with major populations of Watson-Crick-Franklin (WCF) and three distinct non-Watson-Crick-Franklin (nWCFP1, nWCFP2, nWCFO) conformations through intra and inter-strand flipping have been observed. Our results suggest that a dynamical conformational change leads to the production of diffierent conformational distribution for the systems. Simulations with a short ds-DNA duplex suggest nWCF (P1 and O) as the predominant structures, whereas long ds-DNA duplex simulations indicate almost equal populations of WCF, nWCFP1, nWCFO. DS-DN in the terminal position is found to be more flexible with occasional mispairing and fraying. Overall, these results suggest flexibility and dynamical conformational change of the UBP as well as indicate varied conformational distribution irrespective of starting orientation of the UBP and length og DNA strand.
人工三联体碱基(非天然碱基,UBP)的掺入已成为扩展遗传密码子的基本技术。由罗梅斯伯格(Romesberg)及其同事开发的潜在非天然碱基对(UBP)2,6-二甲基-2-异喹啉-1-硫酮:D5SIC(DS)和 2-甲氧基-3-甲基萘:DNAM(DN),已显示出在 DNA 中复制的显著能力。包含 3'末端 DS-DN 对的聚合酶/双链 DNA(ds-DNA)复合物的晶体结构显示出预插入时的平行堆叠几何形状,以及插入后的插入结构的插入几何形状。DS-DN 在 DNA 双链体中的非传统取向激发了科学家研究 UBP 掺入 DNA 的构象取向和结构特性。近年来,计算模拟已被用于研究 DS-DN 在 DNA 双链体中的几何形状;然而,由于没有明确的结论,仍然存在未解决的问题。在这项工作中,我们考虑了短和长 DNA 模板,使用极化和非极化经典 MD 模拟研究了水溶液中 ds-DNA 链中 DS 和 DN 的结构和动力学特性。通过链内和链间翻转,观察到 UBP 的柔性构象变化,主要存在 Watson-Crick-Franklin(WCF)和三个不同的非 Watson-Crick-Franklin(nWCFP1、nWCFP2、nWCFO)构象。我们的结果表明,动态构象变化导致系统产生不同的构象分布。用短 ds-DNA 双链体进行的模拟表明,nWCF(P1 和 O)是主要结构,而长 ds-DNA 双链体模拟表明,WCF、nWCFP1 和 nWCFO 的种群几乎相等。位于末端位置的 DS-DN 被发现更具柔韧性,偶尔会出现错配和磨损。总的来说,这些结果表明 UBP 的灵活性和动态构象变化,并表明无论 UBP 的起始取向和 DNA 链的长度如何,都存在不同的构象分布。