Klein Johanna, Pilmé Julien
Sorbonne Université, CNRS, Laboratoire de Chimie Théorique CC 137, 4 Place Jussieu F., Paris CEDEX 05 75252, France.
J Chem Theory Comput. 2024 Mar 12;20(5):2010-2021. doi: 10.1021/acs.jctc.3c01248. Epub 2024 Feb 14.
In the context of the conceptual density functional theory (cDFT) and based on the computational efficiency of the constrained DFT (CDFT), we demonstrate that chemical reactivity can be governed by the difference between the local interacting chemical potentials of the reactants (referred as ), in agreement with Sanderson's equalization principle. In a proof-of-concept study, we investigated illustrative examples involving typical non-covalent donor-acceptor systems and reactive systems are provided. For the selected systems, our approach reveals significant mimicking between and the DFT-computed intermolecular interaction energy profiles. We further evaluate the influence of the Coulomb and exchange-correlation contributions in . These latter results suggest that numerous potential energy surfaces of clusters can be explored using a Sanderson-like model only based on classical interactions between molecular orbitals domains. To conclude, this study achieved a deeper understanding of the principles of cDFT and assessed, in a wider context, its efficiency in predicting the chemical reactivity.
在概念密度泛函理论(cDFT)的背景下,基于约束密度泛函理论(CDFT)的计算效率,我们证明化学反应性可由反应物局部相互作用化学势之差(称为 )来控制,这与桑德森的均衡原理一致。在一项概念验证研究中,我们研究了涉及典型非共价供体 - 受体体系的示例,并给出了反应体系。对于所选体系,我们的方法揭示了 与DFT计算的分子间相互作用能分布之间存在显著的相似性。我们进一步评估了 中库仑和交换关联贡献的影响。这些结果表明,仅基于分子轨道域之间的经典相互作用,使用类似桑德森的模型就可以探索团簇的众多势能面。总之,本研究对cDFT原理有了更深入的理解,并在更广泛的背景下评估了其预测化学反应性的效率。