Gillet Natacha, Berstis Laura, Wu Xiaojing, Gajdos Fruzsina, Heck Alexander, de la Lande Aurélien, Blumberger Jochen, Elstner Marcus
Institute of Physical Chemistry, Karlsruhe Institute of Technology , Kaiserstrasse 12, 76131 Karlsruhe, Germany.
National Bioenergy Center, National Renewable Energy Laboratory , 15013 Denver West Parkway, Golden, Colorado 80401, United States.
J Chem Theory Comput. 2016 Oct 11;12(10):4793-4805. doi: 10.1021/acs.jctc.6b00564. Epub 2016 Sep 28.
In this article, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesized by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated π-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. These four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.
在本文中,测试了四种在桥介导电子转移背景下计算电荷转移积分的方法。这些方法基于密度泛函理论(DFT)。我们考虑了两种微扰格林函数有效哈密顿量方法(第一种,在DFT理论水平上,使用定域分子轨道;第二种,应用紧束缚DFT方法,使用片段轨道)以及两种分别使用平面波或局域基组的约束DFT实现。为了评估这些方法对于以键间(TB)为主或空间(TS)为主的转移的性能,考虑了不同的分子集。对于键间电子转移(ET),分析了几个最初由帕登 - 罗及其同事合成的、用于从光发射和电子传输光谱推导电子耦合值的分子。所测试的方法在重现实验数据、指数距离衰减常数以及ET途径间干涉产生的超桥效应方面被证明是成功的。对于空间ET,基于电子耦合对供体 - 受体距离、桥结构和ET势垒高度的依赖性,创建并分析了具有杂环戊二烯分子的专用π堆积体系。廉价的片段轨道密度泛函紧束缚(FODFTB)方法给出了与约束密度泛函理论(CDFT)相似的结果,并且两者都重现了耦合随供体 - 受体距离和桥接单元数量的预期指数衰减。这四种方法对于TB和TS ET似乎都能给出可靠的结果,并且为涉及长程电荷转移的大型系统提供了一种替代昂贵的从头算方法的良好选择。