Suppr超能文献

神经丝轻链作为多发性硬化症管理中脑脊液和血液生物标志物的使用指南。

Guidance for use of neurofilament light chain as a cerebrospinal fluid and blood biomarker in multiple sclerosis management.

机构信息

Department of Medicine (Neurology), University of Ottawa, and the Ottawa Hospital Research Institute, Ontario, Canada.

Department of Neurology, Barts Health NHS Trust, London, England, UK.

出版信息

EBioMedicine. 2024 Mar;101:104970. doi: 10.1016/j.ebiom.2024.104970. Epub 2024 Feb 13.

Abstract

Neurofilament light chain (NfL) is a long-awaited blood biomarker that can provide clinically useful information about prognosis and therapeutic efficacy in multiple sclerosis (MS). There is now substantial evidence for this biomarker to be used alongside magnetic resonance imaging (MRI) and clinical measures of disease progression as a decision-making tool for the management of patients with MS. Serum NfL (sNfL) has certain advantages over traditional measures of MS disease progression such as MRI because it is relatively noninvasive, inexpensive, and can be repeated frequently to monitor activity and treatment efficacy. sNfL levels can be monitored regularly in patients with MS to determine change from baseline and predict subclinical disease activity, relapse risk, and the development of gadolinium-enhancing (Gd+) lesions. sNfL does not replace MRI, which provides information related to spatial localisation and lesion stage. Laboratory platforms are starting to be made available for clinical application of sNfL in several countries. Further work is needed to resolve issues around comparisons across testing platforms (absolute values) and normalisation (reference ranges) in order to guide interpretation of the results.

摘要

神经丝轻链(NfL)是一种期待已久的血液生物标志物,可提供关于多发性硬化症(MS)预后和治疗效果的临床有用信息。现在有大量证据表明,该生物标志物可与磁共振成像(MRI)和疾病进展的临床指标一起用于作为多发性硬化症患者管理的决策工具。血清 NfL(sNfL)相对于 MRI 等传统的 MS 疾病进展测量指标具有某些优势,因为它相对无创、廉价,并且可以频繁重复以监测疾病活动和治疗效果。可以定期监测多发性硬化症患者的 sNfL 水平,以确定从基线的变化并预测临床前疾病活动、复发风险和钆增强(Gd+)病变的发展。sNfL 不能替代 MRI,MRI 提供与空间定位和病变阶段相关的信息。几个国家的实验室平台开始可用于 sNfL 的临床应用。需要进一步的工作来解决测试平台(绝对值)之间的比较以及标准化(参考范围)方面的问题,以便指导对结果的解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb6/10875256/2f454b2146cd/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验