Suppr超能文献

太阳能和机械能激发的ZnInS/BiFeO异质结中增强的压电光催化性能用于高效析氢

Enhanced piezo-photocatalytic performance in ZnInS/BiFeO heterojunction stimulated by solar and mechanical energy for efficient hydrogen evolution.

作者信息

Su Ping, Zhang Dong, Yao Xintong, Liang Tengteng, Yang Nan, Zhang Dafeng, Pu Xipeng, Liu Junchang, Cai Peiqing, Li Zhengping

机构信息

School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, Shandong 252000, PR China.

School of Physics Science and Information Technology, Shandong Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng, Shandong 252000, PR China.

出版信息

J Colloid Interface Sci. 2024 May 15;662:276-288. doi: 10.1016/j.jcis.2024.02.058. Epub 2024 Feb 6.

Abstract

An emerging approach that employs both light and vibration energy on binary photo-/piezoelectric semiconductor materials for efficient hydrogen (H) evolution has garnered considerable attention. ZnInS (ZIS) is recognized as a promising visible-light-activated photocatalyst. However, its effectiveness is constraint by the slow separation dynamics of photoexcited carriers. Density functional theory (DFT) predictions have shown that the integration of piezoelectric BiFeO (BFO) is conducive to the reduction of the H adsorption free energy (ΔG) for the photocatalytic H evolution reaction, thereby enhancing the reaction kinetics. Informed by theoretical predictions, piezoelectric BFO polyhedron particles were successfully synthesized and incorporated with ZIS nanoflowers to create a ZIS/BFO heterojunction using an ultrasonic-assisted calcination method. When subjected to simultaneous ultrasonic treatment and visible-light irradiation, the optimal ZIS/BFO piezoelectric enhanced (piezo-enhanced) heterojunction exhibited a piezoelectric photocatalytic (piezo-photocatalytic) H evolution rate approximately 6.6 times higher than that of pristine ZIS and about 3.0 times greater than the rate achieved under light-only conditions. Moreover, based on theoretical predictions and experimental results, a plausible mechanism and charge transfer route for the enhancement of piezo-photocatalytic performance were studied by the subsequent piezoelectric force microscopy (PFM) measurements and DFT calculations. The findings of this study strongly confirm that both the internal electric field of the step-scheme (S-Scheme) heterojunction and the alternating piezoelectric field generated by the vibration of BFO can enhance the transportation and separation of electron-hole pairs. This study presents a concept for the multipath utilization of light and vibrational energy to harness renewable energy from the environment.

摘要

一种在二元光/压电半导体材料上同时利用光能和振动能来高效析氢的新兴方法已引起了广泛关注。硫化锌铟(ZIS)被认为是一种很有前景的可见光激活光催化剂。然而,其效率受到光激发载流子缓慢分离动力学的限制。密度泛函理论(DFT)预测表明,压电材料铋铁氧体(BFO)的整合有利于降低光催化析氢反应中氢吸附自由能(ΔG),从而提高反应动力学。基于理论预测,成功合成了压电BFO多面体颗粒,并通过超声辅助煅烧方法将其与ZIS纳米花结合,形成了ZIS/BFO异质结。当同时进行超声处理和可见光照射时,最佳的ZIS/BFO压电增强异质结的压电光催化析氢速率比原始ZIS高约6.6倍,比仅光照条件下的速率高约3.0倍。此外,基于理论预测和实验结果,并通过后续的压电显微镜(PFM)测量和DFT计算,研究了增强压电光催化性能的合理机制和电荷转移途径。本研究结果有力地证实,阶梯型(S型)异质结的内建电场和BFO振动产生的交变压电场都可以增强电子 - 空穴对的传输和分离。本研究提出了一种多途径利用光能和振动能以从环境中获取可再生能源的概念。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验