Suppr超能文献

用于集成光子学认知射频传感的模拟时空特征提取

Analog spatiotemporal feature extraction for cognitive radio-frequency sensing with integrated photonics.

作者信息

Xu Shaofu, Liu Binshuo, Yi Sicheng, Wang Jing, Zou Weiwen

机构信息

State Key Laboratory of Advanced Optical Communication Systems and Networks, Intelligent Microwave Lightwave Integration Innovation Center (imLic), Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Light Sci Appl. 2024 Feb 14;13(1):50. doi: 10.1038/s41377-024-01390-9.

Abstract

Analog feature extraction (AFE) is an appealing strategy for low-latency and efficient cognitive sensing systems since key features are much sparser than the Nyquist-sampled data. However, applying AFE to broadband radio-frequency (RF) scenarios is challenging due to the bandwidth and programmability bottlenecks of analog electronic circuitry. Here, we introduce a photonics-based scheme that extracts spatiotemporal features from broadband RF signals in the analog domain. The feature extractor structure inspired by convolutional neural networks is implemented on integrated photonic circuits to process RF signals from multiple antennas, extracting valid features from both temporal and spatial dimensions. Because of the tunability of the photonic devices, the photonic spatiotemporal feature extractor is trainable, which enhances the validity of the extracted features. Moreover, a digital-analog-hybrid transfer learning method is proposed for the effective and low-cost training of the photonic feature extractor. To validate our scheme, we demonstrate a radar target recognition task with a 4-GHz instantaneous bandwidth. Experimental results indicate that the photonic analog feature extractor tackles broadband RF signals and reduces the sampling rate of analog-to-digital converters to 1/4 of the Nyquist sampling while maintaining a high target recognition accuracy of 97.5%. Our scheme offers a promising path for exploiting the AFE strategy in the realm of cognitive RF sensing, with the potential to contribute to the efficient signal processing involved in applications such as autonomous driving, robotics, and smart factories.

摘要

模拟特征提取(AFE)对于低延迟和高效认知传感系统而言是一种颇具吸引力的策略,因为关键特征比奈奎斯特采样数据稀疏得多。然而,由于模拟电子电路的带宽和可编程性瓶颈,将AFE应用于宽带射频(RF)场景具有挑战性。在此,我们介绍一种基于光子学的方案,该方案可在模拟域中从宽带RF信号中提取时空特征。受卷积神经网络启发的特征提取器结构在集成光子电路上实现,以处理来自多个天线的RF信号,从时间和空间维度提取有效特征。由于光子器件的可调性,光子时空特征提取器是可训练的,这提高了所提取特征的有效性。此外,还提出了一种数字 - 模拟混合迁移学习方法,用于对光子特征提取器进行有效且低成本的训练。为了验证我们的方案,我们展示了一个具有4 GHz瞬时带宽的雷达目标识别任务。实验结果表明,光子模拟特征提取器能够处理宽带RF信号,并将模数转换器的采样率降低到奈奎斯特采样率的1/4,同时保持97.5%的高目标识别准确率。我们的方案为在认知RF传感领域利用AFE策略提供了一条有前景的途径,有望为自动驾驶、机器人技术和智能工厂等应用中的高效信号处理做出贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d22/10866915/e269f9d40acc/41377_2024_1390_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验