Suppr超能文献

结构和机器学习指导的工程表明,抗 PD-1 兔抗体中的一个非典型二硫键不会阻碍抗体的可开发性。

Structure- and machine learning-guided engineering demonstrate that a non-canonical disulfide in an anti-PD-1 rabbit antibody does not impede antibody developability.

机构信息

Department of Antibody Engineering, Genentech Inc, South San Francisco, CA, USA.

Department of Structural Biology, Genentech Inc, South San Francisco, CA, USA.

出版信息

MAbs. 2024 Jan-Dec;16(1):2309685. doi: 10.1080/19420862.2024.2309685. Epub 2024 Feb 14.

Abstract

Rabbits produce robust antibody responses and have unique features in their antibody repertoire that make them an attractive alternative to rodents for in vivo discovery. However, the frequent occurrence of a non-canonical disulfide bond between complementarity-determining region (CDR) H1 (C35a) and CDRH2 (C50) is often seen as a liability for therapeutic antibody development, despite limited reports of its effect on antibody binding, function, and stability. Here, we describe the discovery and humanization of a human-mouse cross-reactive anti-programmed cell death 1 (PD-1) monoclonal rabbit antibody, termed h1340.CC, which possesses this non-canonical disulfide bond. Initial removal of the non-canonical disulfide resulted in a loss of PD-1 affinity and cross-reactivity, which led us to explore protein engineering approaches to recover these. First, guided by the sequence of a related clone and the crystal structure of h1340.CC in complex with PD-1, we generated variant h1340.SA.LV with a potency and cross-reactivity similar to h1340.CC, but only partially recovered affinity. Side-by-side developability assessment of both h1340.CC and h1340.SA.LV indicate that they possess similar, favorable properties. Next, and prompted by recent developments in machine learning (ML)-guided protein engineering, we used an unbiased ML- and structure-guided approach to rapidly and efficiently generate a different variant with recovered affinity. Our case study thus indicates that, while the non-canonical inter-CDR disulfide bond found in rabbit antibodies does not necessarily constitute an obstacle to therapeutic antibody development, combining structure- and ML-guided approaches can provide a fast and efficient way to improve antibody properties and remove potential liabilities.

摘要

兔子产生强大的抗体反应,并且在其抗体库中具有独特的特征,这使得它们成为啮齿动物体内发现的有吸引力的替代品。然而,在体内发现的情况下,尽管关于其对抗体结合、功能和稳定性的影响的报道有限,但补体决定区(CDR)H1(C35a)和 CDRH2(C50)之间经常出现非典型二硫键的情况经常被视为治疗性抗体开发的一个缺点。在这里,我们描述了一种人-鼠交叉反应性抗程序性细胞死亡 1(PD-1)单克隆兔抗体 h1340.CC 的发现和人源化,该抗体具有这种非典型二硫键。最初去除非典型二硫键导致 PD-1 亲和力和交叉反应性丧失,这促使我们探索恢复这些特性的蛋白质工程方法。首先,根据相关克隆的序列和 h1340.CC 与 PD-1 复合物的晶体结构,我们生成了变体 h1340.SA.LV,其效力和交叉反应性与 h1340.CC 相似,但仅部分恢复了亲和力。对 h1340.CC 和 h1340.SA.LV 的并排可开发性评估表明,它们具有相似的有利特性。接下来,受机器学习(ML)指导的蛋白质工程的最新发展的启发,我们使用了一种无偏的 ML 和结构指导方法,快速有效地生成了一种具有恢复亲和力的不同变体。因此,我们的案例研究表明,虽然兔抗体中发现的非典型的 CDR 间二硫键不一定构成治疗性抗体开发的障碍,但结合结构和 ML 指导的方法可以提供一种快速有效的方法来改善抗体特性并去除潜在的缺陷。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3b0/10877986/9c92185894bd/KMAB_A_2309685_F0001_OC.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验