Suppr超能文献

高通量突变扫描的 RosettaDDG 预测:从稳定性到结合。

RosettaDDGPrediction for high-throughput mutational scans: From stability to binding.

机构信息

Cancer Structural Biology, Danish Cancer Society Research Center, Copenhagen, Denmark.

Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, Lyngby, Denmark.

出版信息

Protein Sci. 2023 Jan;32(1):e4527. doi: 10.1002/pro.4527.

Abstract

Reliable prediction of free energy changes upon amino acid substitutions (ΔΔGs) is crucial to investigate their impact on protein stability and protein-protein interaction. Advances in experimental mutational scans allow high-throughput studies thanks to multiplex techniques. On the other hand, genomics initiatives provide a large amount of data on disease-related variants that can benefit from analyses with structure-based methods. Therefore, the computational field should keep the same pace and provide new tools for fast and accurate high-throughput ΔΔG calculations. In this context, the Rosetta modeling suite implements effective approaches to predict folding/unfolding ΔΔGs in a protein monomer upon amino acid substitutions and calculate the changes in binding free energy in protein complexes. However, their application can be challenging to users without extensive experience with Rosetta. Furthermore, Rosetta protocols for ΔΔG prediction are designed considering one variant at a time, making the setup of high-throughput screenings cumbersome. For these reasons, we devised RosettaDDGPrediction, a customizable Python wrapper designed to run free energy calculations on a set of amino acid substitutions using Rosetta protocols with little intervention from the user. Moreover, RosettaDDGPrediction assists with checking completed runs and aggregates raw data for multiple variants, as well as generates publication-ready graphics. We showed the potential of the tool in four case studies, including variants of uncertain significance in childhood cancer, proteins with known experimental unfolding ΔΔGs values, interactions between target proteins and disordered motifs, and phosphomimetics. RosettaDDGPrediction is available, free of charge and under GNU General Public License v3.0, at https://github.com/ELELAB/RosettaDDGPrediction.

摘要

可靠地预测氨基酸取代(ΔΔGs)引起的自由能变化对于研究其对蛋白质稳定性和蛋白质-蛋白质相互作用的影响至关重要。实验突变扫描技术的进步使得高通量研究成为可能,这要归功于多重技术。另一方面,基因组学计划提供了大量与疾病相关的变异数据,这些数据可以从基于结构的方法分析中受益。因此,计算领域应该保持同步,为快速准确的高通量ΔΔG 计算提供新的工具。在这种情况下,Rosetta 建模套件实施了有效的方法来预测蛋白质单体中氨基酸取代时的折叠/去折叠ΔΔGs,并计算蛋白质复合物中结合自由能的变化。然而,对于没有 Rosetta 丰富经验的用户来说,它们的应用可能具有挑战性。此外,Rosetta 用于预测 ΔΔG 的协议是一次考虑一个变体设计的,这使得高通量筛选的设置变得繁琐。出于这些原因,我们设计了 RosettaDDGPrediction,这是一个可定制的 Python 包装器,旨在使用 Rosetta 协议在一组氨基酸取代物上运行自由能计算,而无需用户进行大量干预。此外,RosettaDDGPrediction 还可以帮助检查已完成的运行并聚合多个变体的原始数据,并生成可用于出版的图形。我们在四个案例研究中展示了该工具的潜力,包括儿童癌症中不确定意义的变体、具有已知实验展开 ΔΔGs 值的蛋白质、目标蛋白与无序基序之间的相互作用以及磷酸化模拟物。RosettaDDGPrediction 可在 https://github.com/ELELAB/RosettaDDGPrediction 免费获得,并且根据 GNU General Public License v3.0 进行许可。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba8e/9795540/a45eb163eedc/PRO-32-e4527-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验