Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Bologna, Italy.
Department of Chemistry, The University of Memphis, Memphis, Tennessee, USA.
Photochem Photobiol. 2024 Mar-Apr;100(2):443-452. doi: 10.1111/php.13922. Epub 2024 Feb 14.
Time-dependent density functional theory (TD-DFT) and multiconfigurational second-order perturbation theory (CASPT2) are two of the most widely used methods to investigate photoinduced dynamics in DNA-based systems. These methods sometimes give diverse dynamics in physiological environments usually modeled by quantum mechanics/molecular mechanics (QM/MM) protocol. In this work, we demonstrate for the uridine test case that the underlying topology of the potential energy surfaces of electronic states involved in photoinduced relaxation is similar in both electronic structure methods. This is verified by analyzing surface-hopping dynamics performed at the QM/MM level on aqueous solvated uridine at TD-DFT and CASPT2 levels. By constraining the dynamics to remain on state we observe similar fluctuations in energy and relaxation lifetimes in surface-hopping dynamics in both TD-DFT and experimentally validated CASPT2 methods. This finding calls for a systematic comparison of the ES potential energy surfaces of DNA and RNA nucleosides at the single- and multi-reference levels of theory. The anomalous long excited state lifetime at the TD-DFT level is explained by trapping due to the tendency of TD-DFT in QM/MM schemes with electrostatic embedding to underestimate the energy of the state leading to a wrong energetic order. A study of the FC energetics suggests that improving the description of the surrounding environment through polarizable embedding or by the expansion of QM layer with hydrogen-bonded waters helps restore the correct state order at TD-DFT level. Thus by combining TDDFT with an accurate modeling of the environment, TD-DFT is positioned as the standout protocol to model photoinduced dynamics in DNA-based aggregates and multimers.
时间依赖密度泛函理论(TD-DFT)和多组态二级微扰理论(CASPT2)是研究 DNA 基系统中光诱导动力学最广泛使用的两种方法。这些方法在生理环境下有时会给出不同的动力学,生理环境通常通过量子力学/分子力学(QM/MM)协议进行建模。在这项工作中,我们以尿嘧啶为例证明了涉及光诱导弛豫的电子态的势能表面的底层拓扑在这两种电子结构方法中是相似的。这是通过在 QM/MM 水平上对水溶液中尿嘧啶进行表面跳跃动力学分析,并在 TD-DFT 和实验验证的 CASPT2 水平上进行表面跳跃动力学分析来验证的。通过限制动力学保持在一个状态,我们观察到在 TD-DFT 和实验验证的 CASPT2 方法中,表面跳跃动力学中的能量和弛豫寿命都有相似的波动。这一发现呼吁在单参考和多参考理论水平上对 DNA 和 RNA 核苷的 ES 势能表面进行系统比较。在 TD-DFT 水平上,由于 TD-DFT 在带有静电嵌入的 QM/MM 方案中低估了 态的能量,导致错误的 能量顺序,因此出现异常长的激发态寿命。对 FC 能态的研究表明,通过极化嵌入或通过氢键水扩展 QM 层来改进周围环境的描述有助于在 TD-DFT 水平上恢复正确的状态顺序。因此,通过将 TDDFT 与环境的精确建模相结合,TD-DFT 被定位为在 DNA 基聚集体和多聚物中模拟光诱导动力学的突出协议。