Tan Emily Xi, Tang Jingxiang, Leong Yong Xiang, Phang In Yee, Lee Yih Hong, Pun Chi Seng, Ling Xing Yi
Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
Division of Mathematics, School of Physical and Mathematical Sciences Department, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
Angew Chem Int Ed Engl. 2024 Apr 2;63(14):e202317978. doi: 10.1002/anie.202317978. Epub 2024 Feb 29.
Nanoparticle (NP) characterization is essential because diverse shapes, sizes, and morphologies inevitably occur in as-synthesized NP mixtures, profoundly impacting their properties and applications. Currently, the only technique to concurrently determine these structural parameters is electron microscopy, but it is time-intensive and tedious. Here, we create a three-dimensional (3D) NP structural space to concurrently determine the purity, size, and shape of 1000 sets of as-synthesized Ag nanocubes mixtures containing interfering nanospheres and nanowires from their extinction spectra, attaining low predictive errors at 2.7-7.9 %. We first use plasmonically-driven feature enrichment to extract localized surface plasmon resonance attributes from spectra and establish a lasso regressor (LR) model to predict purity, size, and shape. Leveraging the learned LR, we artificially generate 425,592 augmented extinction spectra to overcome data scarcity and create a comprehensive NP structural space to bidirectionally predict extinction spectra from structural parameters with <4 % error. Our interpretable NP structural space further elucidates the two higher-order combined electric dipole, quadrupole, and magnetic dipole as the critical structural parameter predictors. By incorporating other NP shapes and mixtures' extinction spectra, we anticipate our approach, especially the data augmentation, can create a fully generalizable NP structural space to drive on-demand, autonomous synthesis-characterization platforms.
纳米颗粒(NP)表征至关重要,因为在合成后的NP混合物中不可避免地会出现各种形状、尺寸和形态,这会深刻影响它们的性质和应用。目前,同时确定这些结构参数的唯一技术是电子显微镜,但它既耗时又繁琐。在此,我们创建了一个三维(3D)NP结构空间,以便从1000组合成后的含有干扰纳米球和纳米线的银纳米立方体混合物的消光光谱中同时确定其纯度、尺寸和形状,预测误差低至2.7 - 7.9%。我们首先利用等离子体驱动的特征富集从光谱中提取局域表面等离子体共振属性,并建立一个套索回归器(LR)模型来预测纯度、尺寸和形状。利用学习到的LR,我们人工生成了425,592个增强消光光谱,以克服数据稀缺问题,并创建一个全面的NP结构空间,从结构参数双向预测消光光谱,误差<4%。我们可解释的NP结构空间进一步阐明了两个高阶组合电偶极、四极和磁偶极是关键的结构参数预测因子。通过纳入其他NP形状和混合物的消光光谱,我们预计我们的方法,特别是数据增强,能够创建一个完全可推广的NP结构空间,以驱动按需自主的合成 - 表征平台。